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Abstract
This paper provides a method for finding the complete set of feasible solutions to
a problematic situation, whose structure is that of a network amenable to the ana-
lytical approach known as “analysis of interconnected decision areas”, or AIDA. In
doing so, the paper not only resolves a long-standing computational problem, but also
offers means for examining all solutions in either lists or diagrams, thus empowering
decision-makers to make informed judgments as to how to tackle an entire problem
or its subsets. The analytical advantage of using a signed graph in AIDA compu-
tations is demonstrated, proffering an innovative contribution to the approach. The
paper concludes by identifying potentially fruitful avenues of future research as well
as interdisciplinary opportunities.

Keywords Computational model · Computer supported design · Networks ·
Decision-making · Pajek software

1 Analysis of Interconnected Decision Areas: Characteristics
and Questions

In the mid-1960s, Harary et al. (1965) published a paper that described the existence
of problematic situations defined by the following characteristics:
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• The problematic situation is composed of a number of decision areas;
• Each decision area indicates an aspect of the situation where a choice must be made
between two or more mutually exclusive options;

• An option in one decision area may or may not be compatible with an option in
another decision area; and,

• A combination of compatible options, one from each decision area, provides a
feasible solution1 to the problematic situation.

Given these characteristics, Harary et al. (1965) then asked two questions:

1. How many feasible solutions exist? and,
2. What options compose each of the feasible solutions?2

Harary et al. (1965) called their computational approach the “analysis of intercon-
nected decision areas”, or AIDA, and, using graph theory, provided a solution for
a special case of seven options distributed across three decision areas. Although
they asserted the generalization of their approach for any number of decision areas,
with any number of options distributed between them, they did not demonstrate this.
Instead, some years later, Harary (1969: 151) demonstrated a much simpler, and ele-
gant, solution for the aforementioned special case, using the cubed adjacency matrix.
The provision of a generically applicable approach poses a non-trivial combinatorial
challenge in the form of a network.What follows addresses this challenge, and thereby
provides a means for answering the two questions for any number of decision areas
and options.

The paper begins by reviewing the manner in which AIDA has been discussed
across numerous disciplines. Attention is paid to discussions to be found in the plan-
ning literature, in particular those on the Strategic Choice Approach. The conclusion is
drawn that the computational challenge posed by AIDA has yet to be fully addressed,
and practical reasons for resolving it are given. The point is also made that, notwith-
standing the advantages of incorporating it into other methods, AIDA is a stand-alone
method with a clearly defined, specific purpose, and is treated as such in the ensuing
discussion.

Addressing the computational challenge is sourced in graph theory, with the inno-
vative introduction of a signed graph as central to the resolution. Relevant theory
is introduced from subgraph isomorphism procedures and backtrack programming.
Pseudocode of an algorithm that performs the analytical task is given in full, and
software in which the pseudocode is programmed is introduced. Throughout, the
discussion is accompanied by a published, worked example drawn from the decision-
making field, and illustrated with multiple figures that also include additional details.
The paper ends by emphasizing how the procedure empowers decision-makers, and
the conclusion discusses potentially fruitful avenues of future research as well as
interdisciplinary opportunities.

1 The term “feasible solution” is one used by Harary et al. (1965), who also use the term “α-combination”.
Synonymous terms in the literature include “solution stream” (Hickling 1978: 473), “feasible strategy”
(Friend 1992: 160), “compatible set” (Weas and Campbell 2004: 233), and “decision scheme” (Friend and
Hickling 2005: 37–38, 67–69, 130–135).
2 Harary et al. (1965) also asked a third question concerning the “cost”, or weight, of each feasible solution.
This is a simple matter of appending coefficients to options that constitute a feasible solution, and is,
therefore, not addressed in this paper.
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2 Motivations for Answers

The need for a formal computational approach for the general casewas first recognized
in the field of design studies. Smith and Morrow (1999: 257) describe AIDA as a
method that:

assumes that there is a number of subproblems within every design problem, and
every subproblem has a variety of possible solutions. Some of the subsolutions
will be incompatible with solutions to other subproblems. If we know what
these incompatibilities are, then it is possible to find feasible sets of solution
with known compatibilities.

They note that AIDA highlights an important part of a design process: “that many
design subcomponent decisions are interrelated.” They then add, however, that there
is a “lack of application” of AIDA and suspect “that there are difficulties in its appli-
cability.” In particular, they point out:

It is possible that the amount of predictive knowledge concerningwhether certain
subsolutions are incompatible exceeds the amount typically available at the time
that decisions are made, or collecting this information is prohibitive.

In other words, Smith and Morrow are asking for a non-prohibitive computational
approach that can provide decision-makers with complete information on all feasi-
ble solutions and their constituent options. With such information at hand, informed
decision-making may proceed, either to tackle the entire problem or some subset.

Despite Smith and Morrow’s appeal, design studies has not tackled the challenge.
One of the field’s pioneers, Jones (1970/1992: 310–315), in his seminal book Design
Methods, describes AIDA as “one of the most powerful and reliable of the design
methods [for exploring problem structure].” Nevertheless, since the inception of the
flagship journal, Design Studies, interest in AIDA has remained on a theoretical level
(Jones 1979: 35; Bayazit et al. 1981: 219; Gat and Gonen 1981: 171, 174; Hsiao and
Chuang 2003: 156; Dorst and Royakkers 2006: 654).

Computational discussions, from fields as varied as production/manufacturing,
engineering, and computing itself, have made little progress. Instead, they betray
reversions to laboriousmanual manipulations, as well as mathematical diversions. The
former case is illustrated by Burbidge (1973: 320) and Blandford and Hope (1985:
209) who offer the multiplication rule for finding all possible combinations between
options. In what amounts to spadework for finding feasible solutions, the approach
of these authors ignores incompatibilities between options as well as their mutual
exclusivity within decision areas. The case of mathematical diversions is illustrated
by Hope and Sharp (1989) and Wu et al. (2015) who choose to focus on weighted
options. These authors take a methodological leap sideways which enriches AIDA
through use of the Analytical Hierarchy Process (Saaty 1980). The question of how
the total number of feasible solutions, and their constituent options, may be found
in the first place, however, remains unanswered. Occasionally, such as in the field of
ergonomics (Hsiao and Chou 2004: 432–433), researchers have simply stated they
found all solutions, but no verifiable computational method is presented.
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The practical application of AIDA has largely been of interest in the planning and
related decision science fields. Here, AIDA is invariably discussed in the context of the
Strategic Choice Approach (SCA) (Friend and Hickling 2005), wherein it performs
a crucial role in identifying feasible solutions, albeit within a reduced computational
context. For SCA is less concerned with complete computation and more with facili-
tating interactive groups to explore manifold aspects of a shared problematic situation.
Aspiring to offer such assistance, SCA is designed to be sensitive to the human context
of sense-making, negotiation, and accommodation, the focus being to aid judgment.
Thus, in its first two “shaping” and “designing” phases (and, especially, in the lat-
ter where AIDA is explicitly used), SCA is not concerned in uncovering all possible
feasible solutions to a problematic situation; it consciously reduces the number of deci-
sion areas, and (usually) the number of constituent options, as a means of avoiding
cognitive overload (Kirsh 2000) in the interest of working toward some commitment
to implementable decisions (Friend and Hickling 2005: 105). SCA, therefore, is an
approach focused on tackling issues far beyond the computational challenge posed by
AIDA (e.g. Rosenhead 1996; Friend and Hickling 2005: 295–360; e Costa et al. 2014;
Sharifzadegan et al. 2014; Norese et al. 2015; Todella et al. 2018). For this reason,
SCA uses AIDA as “an informal kind of ‘intermediate technology’ to aid communica-
tion within decision-making groups” by providing “graphical expression of complex
problem structures” (Friend et al. 1988: 709).

Perhaps due to the emphasis on an “intermediate” use of AIDA, proponents of SCA
haveoffered only scattered and limited comments onAIDA’s computational procedure.
For example, references are made to the possibility of using hand calculations or
computers, but no instructions are given (Luckman 1967: 351–353, 357; Friend 1989:
138, 139). Hickling (1978: 459, 473) mentions a seemingly “straightforward logic”
for finding the number of “combinations [read: feasible solutions]”, but does not
elaborate. Friend (2001: 129–131) and Friend and Hickling (2005: 37–39, 130–131,
135, 249–251) mention a rule of thumb for estimating answers, but provide no means
for finding exact answers. Phahlamohlaka and Friend (2004: 687) state that “basic
combinatorial methods” suffice to uncover feasible solutions, but they neither state
what these “basic” methods are, nor demonstrate their sufficiency. As will be shown
below, AIDA presents a networked combinatorial problem that demands somewhat
more versatile methods brought together in a computer algorithm.

To be sure, computer software for resolving an AIDA combinatorial problem is
available. Its documented history, however, is either ambiguous or resorts to a reduced
computational context. In the late 1960s, Luckman (1967: 353) mentioned that “a
computer programme has been developed” but gave no further details. Ten years
later, Jones (1979: 35) wrote that AIDA “make[s] use of computer programs,” but
again no details were offered. Instead, both in the early 1970s and early 1990s, Jones
(1970/1992: 313) simply pointed to “a computer program available at the Institute for
Operational Research, 42B New Union Street, Coventry, Warwickshire, England, and
suitable for use on any machine which has an ALGOL or a FORTRAN compiler.”
This is echoed by Friend and Hickling (2005: 245) who mention that “a program
to deal with the combinatorial aspects of AIDA was developed in FORTRAN by
Hadley Hunter with other colleagues in the Institute of Operational Research,” but
no additional information is given. Friend (1992: 160) has written about software,
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known as STRAD, that returns feasible solutions “available under any given set of
assumptions about the compatibility or otherwise of each pair of options drawn from
different but inter-connected decision areas”. This software, however, is limited to a
computational maximum of 24 decision areas and, furthermore, no details on how the
calculation is done are available (Friend et al. 2002; Stradspan Ltd. 2014). In addition,
the software is operationally limited: the latest version of the software, STRAD 2.3,
was released in 2002 and “will run on 16-bit and 32-bit versions ofMicrosoftWindows
95, 98, NT4, 2000, XP and Vista” (Stradspan Ltd. 2014). For meeting the intricate
combinatorial complexity of AIDA, the above provide restrictive assistance to would-
be practitioners. In what follows, all limitations are removed.

In removing such limitations, this paper responds to a variety of requirements
identified by Friend (2014) in a keynote presentation to the Public Policy stream
at the Operational Research Society’s 56th annual conference in September 2014, a
presentation expanded into a 40-page review, available at the IORLegacySection of the
DocumentRepository of the Society.With especial regard for “the design of interactive
and inclusive processes for developing public policies,” “strategies for interactive
policy design,” and “interactive methods for problem structuring,” Friend (2014: 1,
18, 21, 23, 31) calls for “the refinement forwider operational use of analytical tools that
were developed in prototype form in earlier IOR [Institute of Operational Research]
projects.” Such refinement is to include: “building further momentum in developing
technology; [providing] advice on directions of development, with suggestions for
linkage to other information systems or forms of decision support software that may
alreadybe in use; [and] re-engineer[ing] the existingSTRADsoftware to be compatible
with the latest internet-enabled operating systems,” and “upgrad[ing] [STRAD as a]
proven decision process support software” (Friend 2014: 27, 35). The overall objective
is to “[design] software tools to enable researchers and policy-makers to developmulti-
layered maps of both structural and adaptive relationships in any domain of public
policy [and] to help researchers and project managers in tracing the impacts of the
different programmatic influences that impinge on those involved in negotiated project
engagements” (Friend 2014: 31).

Friend’s keynote makes it clear that the usefulness of SCA, and, by implication, any
method addressing “interactive policy design,” is increased by the availability, should it
be required, of extended computerized computational assistance. ForAIDA, thismeans
that, given anynumber of decision areas, composedof anynumber of options, decision-
makers should have the means, if they so desire, to obtain the total number of feasible
solutions and their constituent options. In other words, where Friend requests means
for “tracing the impacts of different programmatic influences,” this paper goes one step
further and provides, for a situation structured using AIDA, the means for tracing any
and/or all such influences. In so doing, this paper “refines” one of the best known “tools
thatwere developed in prototype form in earlier IORprojects”—i.e. AIDA; contributes
to “building momentum in developing technology;” provides “suggestions for linkage
to other information systems or forms of decision support software that may already
be in use;” opens an opportunity to “upgrade [STRAD as a] proven decision process
support software,” and thereby contributes to enhancing the power of SCA; and, in
addition, hints at the possibility for developing “multi-layered maps.”
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In order to do this, the wide range of issues discussed thus far must be temporarily
set to one side—the Conclusion will return to them. What follows addresses AIDA as
an independent approach to uncovering feasible solutions—that is, outside the context
of SCA or any other method that might wish to incorporate it. This is in keeping with
the manner in which AIDA was first presented by Harary et al. (1965). The position
taken is that the quantity and quality of AIDA analysis, and the level of confidence
with which decision-makers may use it, may be enhanced by the availability of a
generically applicable computational method that can uncover the exact number of
all feasible solutions, along with their constituent options, no matter the size of the
problem as characterized by its decision areas. In pursuing this position, what follows
is based within the tradition in which AIDA was originally presented by Harary et al.
(1965), that is, the field of graph theory.

3 Terms of Reference

A graph consists of “vertices” and undirected “edges”. The “order” of a graph is its
number vertices, and its “size” is its number of edges (Chartrand (1977: 11). Individual
edges join pairs of vertices according to some criterion. Two vertices so joined are
said to be “adjacent” to each other. Vertices may be labeled, in which case the graph
is termed a “labeled” graph.

Following Brualdi (2018: 27), if we consider the vertices of a graph as a set, S, then
a “partition” of S is a collection S1, S2,…,Sm of subsets of S such that each vertex of
S is in exactly one of those subsets, and:

S � S1 ∪ S2 ∪ . . . ∪ Sm,

Si ∩ S j � ∅, (i �� j).

Thus, the subsets S1, S2,…,Sm are pairwise disjoint subsets, and their union is S.
The subsets S1, S2,…,Sm are called the “parts” of the partition. Parts are enumerated,
such as part 1, part 2, and so on. A partition, P, constituted by n parts, therefore, may
be said to be of order n. The partitioning of vertices in this manner is an understanding
adopted by network theory (Batagelj et al. 2014: 10) and will prove useful in what
follows.

A graph of labeled vertices (options), partitioned into labeled parts (decision areas),
and joined by edges to indicate pairwise incompatibilities between them, has been
called an “option graph” by Friend and Hickling (2005: 37). The top left of Fig. 1
provides an example: the option graph,G, consists of four decision areas, differentiated
by color, three of which have three options and one of which has two options.3

Figure 1 also shows the graph Ḡ, which has the same set of vertices as the option
graph G. The difference is that, in Ḡ, two vertices are adjacent if and only if they are
not adjacent in G. Ḡ is a type of opposite graph known as the “complement” of G:

3 Since the present paper is concerned solely with the computational problem, all designations in the
example of Fig. 1 serve merely as convenient labels. For contextual information concerning the data shown
in Fig. 1, readers may follow the indicated reference.
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Decision Areas legend:

G: Option Graph
Links indicate incompatibilities

Ḡ: Complement of Option Graph
Links indicate compatibilities

Compatibility Grid of G Compatibility Grid of Ḡ

The entries of 1 in each compatibility grid reflect the links evident in its associated graph. The sum of the entries
in a compatibility grid is, therefore, equal to the number of links evident in its associated graph. The diagonal 
entries in blue, are empty, since no option can be in/compatible with itself or, due to mutual exclusivity, with other 
options within its decision area. The lower diagonal area, in grey, is conventionally left empty for its entries would 
only be a reflection of those of the upper diagonal area. Note that registering the in/compatibilities in the grey 
lower diagonal area, and filling the blue diagonal area with zeroes, yields the adjacency matrix of the respective 
graph.

Adjacency Matrix, A, of G Adjacency Matrix, Ā, of Ḡ

G and Ḡ may be represented by respective square adjacency matrices, A and Ā. In each case, the index of rows and 
columns is denoted by the options. The entries of 1 reflect the links evident in the associated graph. 
Ā is found by the following formula (Hage and Harary, 1983: 117): Ā = (J-I)-A, where J is known as a “universal” 
matrix, and is of the same size as A but with all entries being 1; and I, known as the “identity” matrix, is of the 
same size as A, but with entries along the diagonal being 1 and all others zero.
The diagonal entries in the adjacency matrices are necessarily zero since an option cannot be in/compatible with 
itself. Furthermore, due to the mutual exclusivity of options within decision areas, all corresponding entries must 
also be set to zero. The blue shading reflects both these issues.
In the adjacency matrices, the color shadings match those of the compatibility grids for ease of comparison.

Decision 
Areas

Op�ons 10yr 20yr 40yr Main King Gas North South Ind Hous Open
10yr 0 0 1 0 0 0 0 1
20yr 1 0 0 0 0 0 0 0
40yr 1 0 0 0 0 0 0 0
Main 0 1 0 0 0
King 0 1 1 0 0
Gas 1 0 0 0 0
North 0 0 0
South 1 1 0
Ind
Hous
Open

ROAD LINE? CENT'L SITE?

DIST LIFE?

SHOP LOC'N?

ROAD LINE?

CENT'L SITE?

DIST LIFE? SHOP LOC'N?
Decision 

Areas
Op�ons 10yr 20yr 40yr Main King Gas North South Ind Hous Open
10yr 1 1 0 1 1 1 1 0
20yr 0 1 1 1 1 1 1 1
40yr 0 1 1 1 1 1 1 1
Main 1 0 1 1 1
King 1 0 0 1 1
Gas 0 1 1 1 1
North 1 1 1
South 0 0 1
Ind
Hous
Open

CENT'L SITE?

DIST LIFE?

SHOP LOC'N?

ROAD LINE?

CENT'L SITE?

DIST LIFE? SHOP LOC'N? ROAD LINE?

A 10yr 20yr 40yr Main King Gas North South Ind Hous Open
10yr 0 0 0 0 0 1 0 0 0 0 1
20yr 0 0 0 1 0 0 0 0 0 0 0
40yr 0 0 0 1 0 0 0 0 0 0 0
Main 0 1 1 0 0 0 0 1 0 0 0
King 0 0 0 0 0 0 0 1 1 0 0
Gas 1 0 0 0 0 0 1 0 0 0 0
North 0 0 0 0 0 1 0 0 0 0 0
South 0 0 0 1 1 0 0 0 1 1 0
Ind 0 0 0 0 1 0 0 1 0 0 0
Hous 0 0 0 0 0 0 0 1 0 0 0
Open 1 0 0 0 0 0 0 0 0 0 0

Ā 10yr 20yr 40yr Main King Gas North South Ind Hous Open
10yr 0 0 0 1 1 0 1 1 1 1 0
20yr 0 0 0 0 1 1 1 1 1 1 1
40yr 0 0 0 0 1 1 1 1 1 1 1
Main 1 0 0 0 0 0 1 0 1 1 1
King 1 1 1 0 0 0 1 0 0 1 1
Gas 0 1 1 0 0 0 0 1 1 1 1
North 1 1 1 1 1 0 0 0 1 1 1
South 1 1 1 0 0 1 0 0 0 0 1
Ind 1 1 1 1 0 1 1 0 0 0 0
Hous 1 1 1 1 1 1 1 0 0 0 0
Open 0 1 1 1 1 1 1 1 0 0 0

Fig. 1 Graphs, compatibility grids, and adjacency matrices using data from an example by Friend and
Hickling (2005: 34, 36)
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the lines that are present in the complement Ḡ are precisely those that are absent in
the original option graph G (Harary 1969: 15). It follows that the complement Ḡ of an
option graphG is that graph where labeled, partitioned options are joined by one edge
to indicate pairwise compatibilities (as opposed to incompatibilities) between them.

Figure 1 also shows how both, the option graph G and its complement Ḡ, may be
represented by compatibility grids4 (Friend 2001: 128) and, especially useful for what
follows, by adjacency matrices (Harary 1969: 150), A and Ā respectively.

4 Task Delineation

The task of AIDA is one of finding all feasible solutions that conform to the following
conditions:

1. The number of options in each feasible solution is equal to the number of decision
areas;

2. The options constituting each feasible solution respectively belong to different
decision areas; and,

3. Options linked in the option graph (i.e. incompatible options) do not appear
together in any feasible solution.

In other words, feasible solutions are constructed by iteratively cycling through the
decision areas, taken in some consecutive sequence, from each of which one option
is chosen, such that the options constituting any one feasible solution are related
in the complement Ḡ of the option graph G, and not related in the option graph G
itself. Consequently, the relations between the options constituting any one feasible
solution form a cycle, rendering feasible solutions themselves structurally cyclical.
This understanding is relevant when moving toward a graph theoretical statement of
the task at hand.

In graph theoretical terms, given any Ḡwith labeled vertices exclusively distributed
across a partition, P(Ḡ), and linked according to compatibility, the task is to find all
labeled cyclical subgraphs of Ḡ that conform to the following conditions:

1. Each subgraph extracted from Ḡ is of order P(Ḡ);
2. The vertices constituting each subgraph respectively belong to different parts of

P(Ḡ); and,
3. Those vertices that are linked in G do not appear together in any of the subgraphs

extracted from Ḡ.

In graph theory, the task falls under the remit of the subfield known as “subgraph
isomorphism”, recent reviews of which are provided by Conte et al. (2004), Foggia
et al. (2014), and Vento (2015). Its application to “mining graph data” is extensively
discussed in the eponymous book edited by Cook and Holder (2007). An example of
a field that makes extensive empirical use of subgraph isomorphism is Chemistry, in
its search for molecular substructures (Bonnici et al. 2013; Randic 1978; Randic and
Wilkins 1979; Barnard 1993; Willett et al. 1998).

4 Also known as “compatibility matrix” (Friend and Hickling 2005: 35; Hickling 1978: 472), “incompati-
bility matrix” (Blandford and Hope 1985: 209), and “interaction matrix” (Jones 1970/1992: 311–312).
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Subgraph isomorphism is concerned with searching a graph for subgraphs that
conform to a given subgraph sample. Network theory (Batagelj et al. 2014: 53, 94–95)
provides terms which will prove useful in what follows: the given subgraph sample
is known as a “fragment”, F, and the problem is solved through what is known as
“fragment searching”, whereby a graph is searched for all instances that correspond
to a given sample subgraph/fragment F. Constraints may be stipulated for F, such
as those described by conditions (1) and (2), above. For the present case, therefore,
F is a labeled cyclical graph, whose order, as well as partition, P(F), is equal to
the number of parts of P(Ḡ), and whose vertices are partitioned in such a manner
that each vertex is assigned to one and only one part of P(F). AIDA, however, also
requires condition (3), above; that is, any vertices linked in the original option graph,
G, may not appear together in any of the subgraphs extracted from its complement Ḡ.
Consequently, AIDA requires a very particular type of fragment searching, one that
refers simultaneously to the option graph G, and to its complement Ḡ.

The links in an option graph G denote incompatibilities between options. By con-
trast, the links in its complement, Ḡ, denote compatibilities between options. Given
the same set of vertices, therefore, two types of relations may occur, each being the
opposite of the other. Such simultaneity implies the availability of a graphwhere, both,
incompatible and compatible links may be considered. A graph that depicts vertices
between which, both, a relation and its opposite may occur, is called a “signed graph”
(Cartwright and Harary 1956: 282ff; Harary 1957; Hage and Harary 1983: 40–64).
For the case in question here, a signed graph, U, is the union of relations depicted in
the option graph, G, and its complement Ḡ, for the vertex set they both share. This
is shown in Fig. 2, along with its adjacency matrix, S. The availability of a signed
graph, that unites the relations depicted in an option graph, G, and in its complement
Ḡ, enables fragment searching to be done under the aforementioned three conditions
required by AIDA.

In brief, in order to find the feasible solutions, and their constituent options, the
required inputs are:

• A labeled signed graph,U, composed of the vertices (options) shared by the labeled
graphs, G (option graph) and Ḡ (its complement), and uniting the incompatible and
compatible relations depicted therein (in graph theory, such relations are respectively
termed “negative” and “positive”);

• A partition P(Ḡ) [note: this equals P(G)] that assigns the vertices (options) of U
to parts (decision areas), such that a vertex (option) is assigned to only one part
(decision area), and a part (decision area) may have more than one vertex (option)
assigned to it;

• A labeled fragment, F, whose order is equal to the number of parts of P(Ḡ), and
whose structure is cyclical; and,

• A partition, P(F), that assigns each vertex of F to one part, and each part can have
only one vertex.

The details in Figs. 1 and 2 show that these inputs are directly computable from only
one fundamental data structure of AIDA: the option graphG. It will be noted, however,
that the derivations are interchangeable between G, Ḡ, and U. Indeed, Harary et al.
(1965) introduced their own procedure using Ḡ as an initial input. The presentation
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U: Signed Graph
Dashed/Solid links indicate incompatibilities/compatibilities

U is the union of relations depicted in the graph, G, and its complement Ḡ, for the vertex set they both share.

Adjacency Matrix, S, of U

S is found from the adjacency matrices A and Ā, as follows: S = -1A + Ā.

S 10yr 20yr 40yr Main King Gas North South Ind Hous Open
10yr 0 0 0 1 1 -1 1 1 1 1 -1
20yr 0 0 0 -1 1 1 1 1 1 1 1
40yr 0 0 0 -1 1 1 1 1 1 1 1
Main 1 -1 -1 0 0 0 1 -1 1 1 1
King 1 1 1 0 0 0 1 -1 -1 1 1
Gas -1 1 1 0 0 0 -1 1 1 1 1
North 1 1 1 1 1 -1 0 0 1 1 1
South 1 1 1 -1 -1 1 0 0 -1 -1 1
Ind 1 1 1 1 -1 1 1 -1 0 0 0
Hous 1 1 1 1 1 1 1 -1 0 0 0
Open -1 1 1 1 1 1 1 1 0 0 0

Fig. 2 Signed graph with adjacency matrix, using data from Fig. 1

here has focused on G as the initial input only because of claims, based on experience
in using the Strategic Choice Approach, that the provision of G is easier than that of
Ḡ (e.g. Luckman 1967: p. 350; Friend and Hickling 2005: 35–37). Overall, therefore,
there is flexibility in the choice of the fundamental data structure that may initially
be used, including, if available at the outset, the signed graph U which is central to
the solution procedure to be described. What follows is a description of the subgraph
isomorphism algorithmic procedure that manipulates the inputs in order to tackle the
questions stipulated in the introductory section of the paper.

5 Procedural Description

Underlying themajority of procedures to subgraph isomorphism is backtrack program-
ming (Krissinel and Henrick 2004), widely used in constraint satisfaction problems
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(Larrosa and Valiente 2002; Tsang 1993), and classical statements of which are pro-
vided by Golomb and Baumert (1965), Wells (1971: 93–126), Tarjan (1972), and
Fillmore and Williamson (1974).

Backtrack programming, or “backtracking”, is commonly associated with depth-
first search procedures. A depth-first algorithm proceeds deep into a graph in search of
subgraph isomorphisms. When a vertex is reached from where the required subgraph
structure cannot be found, the algorithm backtracks along the visited edges until it
finds a vertex from which an alternative extension of edges may be explored. Due to
its recursive nature, the depth-first procedure is prone to stack overflow problems, and
is thereforemainly applicable to smaller graphs (where “small” is relative to temporary
memory computer space) (Vento 2015: 293).

Eppstein (1999: 11–21; also see Aho et al. 1974: 172–223) shows that the stack
overflow problem is alleviated by making depth-first searches conditional upon
breadth-first procedures, whereby the depth search concentrates on one level at any
one time. Knuth (2015: 129–130) notes that Dodgson [better known as Lewis Car-
roll (Cohen 1995)] was a pioneer in this conditional procedure, but his unpublished
manuscript on the matter—which, Knuth notes, “would have completely changed the
history of mechanical theorem proving if it had come to light earlier”—was found
only in 1977, 79 years after his death. Given the advantages of conditioning depth-
first searches on breadth-first procedures, and broadly following conventions set by
Knuth (1997: 2–9), Fig. 3 provides the pseudocode for such an algorithm applicable
to the present issue of interest.

Such a code is programmed into the freely-downloadable, award-winning,
graph/network software known as “Pajek” (version 5.02 or higher), described by de
Nooy et al. (2018). Pajek handles graphs and digraphs of up to a billion vertices, and
runs on, both, Windows and macOS operating systems. Thus, contrary to STRAD,
computer compatibility and computational maximum issues are alleviated. Further-
more, Pajek requires very simple coding in order to read inputs, and provides easily
interpretable outputs and high-quality diagrams. In what follows, the computational
procedure is illustrated based on the data of Fig. 1. It draws extensively on Pajek, and
provides information on the sequence of Pajek commands that will yield the required
answers.

6 Proof of Concept

Figure 4 illustrates the procedure from the user’s standpoint, based on the example in
Fig. 1, using standard Pajek coding for the inputs.

The Pajek menu instructions are also shown, leading to the generation of three
outputs:

1. A graph containing all the possible feasible solutions;
2. A partition that enumerates the number of feasible solutions to which each option

belongs; and,
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Algorithm AIDA (Searching for subgraphs in a partitioned signed graph). Given any partitioned signed graph, U, find 
all cyclical subgraphs which correspond to a given partitioned cyclical fragment, F.

Terms of reference:
• U: Any signed graph that unites the relations depicted in G and for the vertex set they both share.
• P(U): A partition of the vertices of U, such that each vertex is assigned to only one of the parts, a part may 

have more than one vertex, and no vertices within a part are related. The partition is equally applicable to 
G Gand .

• F: A cyclical graph whose order is equal to the number of parts of P(U)
• P(F): A partition, of the same order and part names of P(U), of the vertices of F, such that each vertex is 

assigned to only one of the parts, and a part may not have more than one vertex
• Negative edge: an edge belonging to G
• Positive edge: an edge belonging to Ḡ

Steps of the algorithm:

S1. Provide U, P(U), F, and P(F).

S2. [Generate an ordered list of all edges in F]. Sort all edges in F according to a breadth-first order. (Sorting the 
edges of F in breadth-first order ensures that the next edge selected from the list will always reach at most one 
vertex that has so far not been visited. For example, for a cyclical fragment with vertices 1-2-3-4-1, if edge 1-2 is 
initially selected, the next edge to be selected must be attached to either vertex 1 or vertex 2, that is, edge 1-4 or 
edge 2-3; edge 3-4 will not be selected.)

S3. [Find a matching in U of one edge of F.] From the ordered list of the edges of F, select the first edge and 
corresponding incident vertices. The vertices are partitioned according to P(F). Find a matching of this edge in U, 
whose corresponding incident vertices are partitioned in P(U) in accordance with P(F). (At this point, any edge in U
can be selected. From now on, “matching” means that all vertices visited so far in U have the same neighborhood 
structure as vertices so far visited in F.)

S4. [Find a matching in U of the next edge of F.]. Choose the next edge from the ordered list of the edges of F and 
corresponding incident vertices. Find a matching of this edge in U, whose corresponding incident vertices are 
partitioned in P(U) in accordance with P(F).

S5. [Has a match been found?] Check that no vertices selected thus far from U are adjacent by negative edges. If 
such adjacency appears, discard the chosen edge and go back to S4.

S6. [Has a cyclical subgraph been found in U?]
• If no, repeat steps S4 and S5. If no cyclical subgraph is found, the algorithm terminates; the signed graph

U does not contain a subgraph that matches the properties of F.
• If yes, repeat steps S3 through S5 until the whole graph has been searched. (Note that many matchings 

are possible up to n – 2 edges. Edge n – 1, however, constrains the possible matchings because it 
transforms them from a path to a cycle.) ❚

Fig. 3 Pseudocode for AIDA algorithm

3. A Pajek data object known as a “hierarchy” (de Nooy et al. 2018: 86–91) that
enumerates the feasible solutions themselves, and, for eachone, lists the constituent
options.

For the example in Fig. 1, these three outputs are shown on the left in Fig. 5. Note
that the Hierarchy provides an initial view listing the number of feasible solutions
with their number of options in brackets (bottom left of Fig. 5); and a detailed view,
available by expanding any one feasible solution from the initial list, that provides a
listing of the constituent options for each feasible solution (on the right in Fig. 5).

For the example in question, Pajek’s hierarchy lists 9 feasible solutions, each con-
stituted by the options shown. The hierarchy data may be conveniently combined in
a diagram. This is illustrated in Fig. 6, and the required Pajek menu instructions are
also provided.
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Load U into Pajek’s Networks interface.
[Main Screen] Network\Create New Network\Transform\Arcs ->Edges\Bidirected only\Min Value

Dialog window "Create new network as a result?": Yes
Result:

1. Network: “U-Symmetrized”

In the Networks Interface, place F as the first network and U-Symmetrized as the second network. 
In the Partitions Interface, place P(F) as the first partition and P(U) as the second partition.
[Main Screen] Networks\Fragment (First in Second)

Dialog window “Searching for Fragments”: uncheck “Induced”; select “Negative lines inside fragment 
not allowed”, “Labeled”, “Check values of lines”, “Extract Subnetwork”, “Retain all vertices after 
extracting”, and “Same vertices determine one fragment at most”.
Click on “Find”.

Result: 
1. Network titled “Subnetwork induced by Sub/Lab/Val fragments”. This is a graph containing all the 

possible fragments (feasible solutions).
2. Partition titled “Sub/Lab/Val fragments”. This offers a count of the number of fragments (feasible 

solutions) to which each vertex (option) belongs.
3. Hierarchy titled “Sub/Lab/Val fragments”. This enumerates the fragments (feasible solutions) and 

provides their constituent vertices (options).
Note: 

• Notice that the edges of the graphs/networks, U and F, can be inputted as matrices or as lists, and both 
formats are shown for illustrative purposes.

• The coding of networks, and the use and manipulation of partitions and hierarchies, in Pajek are 
discussed by de Nooy et al (2018: 6-12, 36-53, 86-91).

*Ver�ces 11 *Ver�ces 11 *Ver�ces 4 *Ver�ces 4
1 "10yr" 1 1 "v1" 1
2 "20yr" 1 2 "v2" 2
3 "40yr" 1 3 "v3" 3
4 "Main" 2 4 "v4" 4
5 "King" 2 *Edges
6 "Gas" 2 1 2
7 "North" 3 2 3
8 "South" 3 3 4
9 "Ind" 4 4 1
10 "Hous" 4
11 "Open" 4

*Matrix
0 0 0 1 1 -1 1 1 1 1 -1
0 0 0 -1 1 1 1 1 1 1 1
0 0 0 -1 1 1 1 1 1 1 1
1 -1 -1 0 0 0 1 -1 1 1 1
1 1 1 0 0 0 1 -1 -1 1 1
-1 1 1 0 0 0 -1 1 1 1 1
1 1 1 1 1 -1 0 0 1 1 1
1 1 1 -1 -1 1 0 0 -1 -1 1
1 1 1 1 -1 1 1 -1 0 0 0
1 1 1 1 1 1 1 -1 0 0 0
-1 1 1 1 1 1 1 1 0 0 0

Da
ta

 o
f I

np
ut

s

F

Par��on of the 
ver�ces of F 

according to the 
number of 

decision areas

P(F)U P(U)

U Par��on of the ver�ces 
(op�ons) of U  according to 
respec�ve decision areas. 

(Note: This par��on is the 
same as that for G  and Ḡ )

Network Par��on Network Par��on

Required 
Inputs

Sample subgraph 
(fragment) F 

Fig. 4 Sample Pajek application, using data from Fig. 1

The analytical advantages of access to lists, such as that on the right of Fig. 5, along
with diagrams and summaries, such as those of Fig. 6, may be exemplified as follows:

• Option “Ind” occurs in only one combination. Should this option be deemed impor-
tant, under some given criteria and context, then the results show that this option is
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All possible feasible solutions
Pajek Output 1: Network titled “Subnetwork induced by 

Sub/Lab/Val fragments”

Subtree of  1 (4)

1. 1  10yr
2. 4  Main
3. 7  North
4. 9  Ind

Subtree of  2 (4)

1. 1  10yr
2. 4  Main
3. 7  North
4.10  Hous

Subtree of  3 (4)

1. 1  10yr
2. 5  King
3. 7  North
4.10  Hous

Subtree of  4 (4)

1. 2  20yr
2. 5  King
3. 7  North
4.11  Open

Subtree of  5 (4)

1. 2  20yr
2. 6  Gas
3. 8  South
4.11  Open

Subtree of  6 (4)

1. 2  20yr
2. 5  King
3. 7  North
4.10  Hous

Subtree of  7 (4)

1. 3  40yr
2. 5  King
3. 7  North
4.11  Open

Subtree of  8 (4)

1. 3  40yr
2. 6  Gas
3. 8  South
4.11  Open

Subtree of  9 (4)

1. 3 40yr
2. 5  King
3. 7  North
4.10  Hous

For each option, enumeration
(in square brackets, and color-coded)

of number of feasible solutions
in which it participates

Pajek Output 2: Partition titled “Sub/Lab/Val fragments”

List of number of feasible solutions,
with number of options in brackets

Pajek Output 3 (initial view): Hierarchy titled “Sub/Lab/Val
fragments”

Feasible solutions with constituent options
Pajek Ouput 3 (detailed view): “Subtree” numbers correspond 

to those in Pajek Hierarchy;
number of options in brackets; each option listed with its 

vertex number and label

Fig. 5 Pajek outputs, using data from Fig. 1

highly constrained: for instance, it can only be chosen in conjunction with “10 yr,”
“Main,” and “North.” Had any one of the decision areas, to which these latter three
options belong, been left out in favor of a reduced problem focus, any consideration
of the option “Ind”would risk erroneous conclusions andmisspent decision-making
time.

• From the “Road Line” decision area, option “South” is more constrained compared
to option “North”. The former option not only participates in only two feasible
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Frequency table showing the 
number of feasible solutions in 
which each option participates.

To obtain a diagram of the hierarchy:
[Main Screen] Hierarchy\Make Network: Yes, Yes
Result:

1. Hierarchy Network
[Main Screen] Network\Create Partition\Degree\All
Result:

1. Degree partition of Hierarchy Network
[Main Screen] Draw\Network + First Partition
The diagram appears in the Draw Screen. In this illustration, a 
partition has also been used to allocate decision area colors to the 
vertices, according to the legend given in Figure 1, thus formatting for 
aesthetic and analytical value (de Nooy et al., 2018: pp. 17-24).

Using the partition titled 
“Sub/Lab/Val fragments”, 
available from the procedure in
Figure 4, the following Pajek 
command provides a frequency 
table (de Nooy et al., 2018: 39-
41):
[Main Screen] Partition\Info, 
and in the dialog window enter
1, followed by the number of 
vertices (in this case, 11).
The table shown above has 
formatted the Pajek frequency 
results for presentational 
purposes.

Op�on

Number 
of 

Feasible 
Solu�ons

North 7
King 5
Open 4
Hous 4
10yr 3
40yr 3
20yr 3
South 2
Main 2
Gas 2
Ind 1

Fig. 6 Diagram showing the number of feasible solutions, as well as their constituent options, using data
from Fig. 1

solutions; it can only occur in these feasible solutions if options “Gas” and “Open”
are adopted. Option “North,” meanwhile, participates in seven feasible solutions,
and its only major constraint is its incompatibility with “Gas.” The comparative
flexibility of adopting one or the other of the options, from the same decision area,
is rendered explicit by allowing a consideration of all the decision areas and options.
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The above serve to illustrate how the procedure enables insights that would not
have been available had a reduced problem focus been initially chosen. On the one
hand, decision-makers have a map of the problematic situation as whole, one that
stimulates informed judgments when considering which subset of feasible solutions
is amenable to further analysis based on contextually-relevant criteria. On the other
hand, decision-makers can gauge the role and flexibility available to any one option.
Therefore, in providing all feasible solutions, in lists and diagrams, the generically
applicable computation method described here empowers decision-makers to make
informed judgments on the macro and micro scale. In the words of Friend (2014:
31) cited earlier, the procedure helps to trace the impacts of different, any, and/or all
programmatic influences.

7 Discussion and Conclusion

The essence of the Analysis of Interconnected Decision Areas (AIDA) is a search
for the complete set of combinations of elements under the following structural con-
ditions: an element must belong to only one group; one group may contain multiple
elements; elements within a group aremutually exclusive; and, elements across groups
may be connected due to incompatibilities or compatibilities. The elements may be
multiple types of entities (e.g. decisions, individuals, institutions, machines, etc.), and,
in terms of quality and quantity, may be distributed differently between and within
each group. The point is that the groups are each seen as relevant in some context,
and the combination of their elements, one from each group, must be uncovered given
the constraints of group clustering, mutual exclusivity of all elements within any one
group, and incompatibilities between certain elements across groups. AIDA, therefore,
addresses the non-trivial systemic challenge of finding combinations of related ele-
ments constrained by group clustering, intra-groupmutual exclusivity, and inter-group
(in)compatibilities.

This paper has provided the means through which the complete set of combinations
may be uncovered. In doing so, it has emphasized the crucial role played by network
modeling, the computational facility afforded by the innovative introduction to the
analysis of a signed graph, and the consequent flexibility of initial inputs that this
affords. The procedure described offers a solution approach that is generically appli-
cable across contexts, and one that is unlimited in terms of scale. The procedure has
been tested with data provided by Harary et al. (1965), Kammeier (1998), Weas and
Campbell (2004), and Friend and Hickling (2005: pp. 34, 36). In all cases, the results
conform to the respective scholars’ claimed (but heretofore unconfirmed) findings.

For the practitioner faced with a situation whose structure conforms to the afore-
mentioned characteristics, the procedure in this paper has alleviated the problem of
computational and presentational tractability. Through the provision of lists as well as
diagrams of the complete set of combinations, decision-makers can make informed
judgments should theywant to tackle the entire problem or some proper subset thereof.
For the former case, decision-makers can work with complete information of the net-
work structure of the situation, and, as illustrated, can even gauge the role played
by, and the flexibility available to, any one option in the entire network. Such assess-
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ments can also be done when working on some subset of a problem, but the initial
choice—and, if desired, comparison—between competing subsets can now be under-
taken in full view of all feasible solutions and their constituent options. At the very
least, decision-makers can appreciate, either in detail or in proportional terms, their
intellectual grasp and ownership of a chosen subset formulation relative to the whole
network problem. Furthermore, the macro and micro insights afforded by the pro-
cedure assist practitioners when deciding on the constitution of whatever problem
focus they might choose: piecemeal or wholesale changes to the number of deci-
sion areas to be considered, along with their interrelations, can now be analyzed in
full view of their contextual relevance. In brief, in alleviating computational and pre-
sentational tractability, greater material and procedural choice is made available to
decision-makers.

In focusing on this provision, the paper has contributed to answering Friend’s (2014)
call to further enhance the StrategicChoiceApproach (SCA) and, in particular, some of
the tools that were developed during his time at the Institute of Operational Research.
By responding to Friend’s encouragement, the paper has not only provided the means
for resolving the computational challenge at the heart of AIDA, which itself lies at
the heart of SCA, but has also demonstrated the utility of linking the SCA software,
STRAD, with network software. This, moreover, points to wider possibilities: the
utility of network science for the family of problem structuring methods (PSMs)
(Rosenhead and Mingers 2001) to which SCA belongs. For if there is one thing that
manyPSMshave in common, it is that they construct, and rely upon, network diagrams.
The PSM literature, however, offers its practitioners little or no network analytical
power.

For example, Soft Systems Methodology (SSM) can produce large conceptual sys-
tems (e.g. Wilson 2001), but no analyses are offered to identify the activities that
sustain the internal coherence of such systems and, without which, any one such sys-
tem disconnects into two ormore independent subsystems. A graph theorist or network
scientist would draw on the analysis of cut vertices (Aldous andWilson 2000: 222), or
the specific definitions of, and multiple analytical procedures for finding, brokerage
that have emerged in the literature (de Nooy et al. 2018: 170–196).

As another example, consider the Decision Explorer® software that complements
Strategic Options Development andAnalysis (SODA). This software includes 41 anal-
yses that help users navigate cognitive maps designed as directed graphs/networks
(Banxia 2005: 156–158). Two of these analyses concern centrality, that is, the central
influence a construct may enjoy in a map. On the one hand, the software allows cen-
trality to be calculated according to immediate degree (the number of links around
a construct, separable into indegree and outdegree); on the other, according to the
distances of all ancestors and descendants of a construct across the entire map. There
exist, however, at least 108 centrality measures for network models, all of them math-
ematically defined and open to translation into computer programs (Schoch 2015: 12;
also see Schoch and Brandes 2016). Incorporating these and other analyses would
serve to add to the power of SODA.

A means through which such an incorporation can happen has been opened by the
introduction of the network software Pajek in this paper. This software is designed
specifically as a network calculator that can handle billions of vertices, and their rela-
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tions, irrespective of context. It is, therefore, useful for both, abstract and empirical
analyses. Conforming to Ackoff’s (1967: B153) maxim—that “no [software] should
ever be [used] unless the [user] for whom it is intended [is] trained to evaluate and
hence control it rather than be controlled by it”—Pajek requires the user to structure
an analysis in a manner analogical to the mathematical operations on networks. This
affords precise operational oversight with consequent demystification of the black
box. Furthermore, Pajek has a long history of published algorithms which are open to
evaluation (Batagelj 1991, 2003; Batagelj and Mrvar 1998, 2008, 2014; Batagelj and
Zaversnik 2011; Batagelj et al. 2014; Batagelj and Cerinšek 2013). This, along with
its user-friendly manageable operations, enables users to maintain control of their use
of the software instead of being controlled by it. In addition, the software provides
high resolution graphics of networks, with multiple means for manipulating their aes-
thetic presentation, thus allowing for sophisticated visual appreciation to complement
analytical results. Finally, Pajek is constantly updating its interface capabilities with
other software.

This last point indicates at least one desirable opportunity for PSM practitioners:
since Pajek, STRAD and Decision Explorer® are programmed to work with networks,
a respective computational interface, between the former and the latter two, would
enhance the latter far beyond their current capabilities, thus offering decision-makers
powerful analytical means for navigating the structural complexity of the situations in
which they are used. Furthermore, interface advantages accrue both ways, for the anal-
yses undertaken in this paper stimulated the design and inclusion of new procedures
in Pajek itself. All indications, therefore, point to a fruitful dialog between the PSM
and network science fields. The relevance of a such a dialog lies in the common aim
between the two fields: the resolution of complex, organizational, socially-infused
problems. The potential for a powerful partnership lies in the fact that each bring
respectively different strengths. Network science is strong on the structural analysis
of complexity. The forte of the PSM field lies in its sophisticated conceptualization
and analysis of process, what may be termed procedural complexity. Both are required
for supporting and facilitating interactions between decision-makers.

Finally, there seem to be at least two outstanding research opportunities concerning
algorithmic design. Smith and Morrow (1999: 257) note that the option graph “sug-
gests that pairs of solutions may be incompatible, but in reality it may be triples of
solutions that are incompatible, although any pair within the triple would be satis-
factory.” This idea is echoed by Jones (1970/1992: 315) who, referring to Luckman
(1967), notes that AIDA could be “extended to take account of incompatibilities of
sub-solutions taken in threes, fours, etc.”; he adds that “it would be useful if AIDA
could be applied in the case of conditional [probabilistic] incompatibilities.” Two paths
for future research on computational processes in AIDA are thereby identified. First,
as it stands, AIDA considers pairwise incompatibilities when computing the number
of feasible solutions. The question raised is whether this dyadic approach might not be
sufficient in some cases. Conceptually, at least, it is not without relevance to design a
computational approach that finds feasible solutions that account for n-tuple incompat-
ibilities, whilst simultaneously accounting for possible compatibilities between any n
−1 options within the n-tuple. Second, it would be useful if AIDA could be developed
to incorporate stochastic processes whereby probabilities, and especially conditional
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probabilities, of the occurrence of decision areas, of options, and of incompatibilities
between options might be systemically incorporated. Any one of these two develop-
ments and, especially, both together, would enhance the versatility of AIDA for group
decision situations characterized by uncertainty and complexity.
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