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Abstract

The stochastic volatility model proposed by Fouque et al. (SVFPS, 2000a) explores
a rapid time-scale fluctuation of the volatility process to end up with a parsimonious
way of capturing the volatility smile implied by close to the money options. In this
paper, we test the SVFPS model using options from a Brazilian telecommunications
stock. First, we find evidence of fast mean reversion in the volatility process. In addi-
tion, to test the model’s ability to price options not so close to the money, we extend
its statistical estimators to consider, in the calibration process, a wider region for the
options moneyness. As an illustration, we price an exotic option.
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In a seminal paper, Black and Scholes (1973) introduced a pricing formula for options
on an underlying stock following a geometric brownian motion. The assumptions include
that the volatility of the underlying stock would be constant along the life of the option.
From the empirical point of view, two different approaches show that this assumption is
not valid. Regarding the historical time series of financial assets returns, many studies in-
dicate that volatility is not constant along time1. Regarding the pricing measure, if we use
market option prices on the same underlying with different maturities and exercise prices
and invert the B&S formula to obtain implied volatilities, we observe that volatility is not
constant. This phenomenon, denominated volatility smile, has been strongly evident on
US. option market data, specially after the US stock market crash of 19872, and one can
also observe it for options on Brazilian stocks. Figure 1 presents the volatilities of options
with a fixed maturity of 24 workdays but with different moneyness (strike over actual
stock price) on the underlying TNLP4.SA, a popular stock from a telecommunications
firm3. The incompatibility of the constant volatility assumption with respect to market
data motivated the study of more sophisticated models that could, consistently generate
the smile pattern, as well as give a reasonable explanation for why such pattern arises.

Stochastic volatility models define an important class that extend the basic B&S
model. Their main innovation is in considering the existence of an independent source
of uncertainty driving the volatility of the underlying asset. Hull and White (1987) pro-
posed one of the first published stochastic volatility models, which consisted of modelling
the underlying stock price and the volatility process as Ito diffusions driven by indepen-
dent Brownian Motions. After that, many models have been proposed, among them,
the influential affine stochastic volatility model of Heston (1993), the stochastic volatility,
stochastic interest rates and random return jumps model of Bakshi et al. (1997), and
recently the double jump stochastic volatility model of Duffie et al. (2000) which allows
for correlated jumps in the return and in the volatility processes.

All among previously cited models deal with data sampled on a daily basis. On the
other hand, advances on the storage capacity of databases have recently allowed the devel-
opment and test of econometric models using high-frequency data. On the high-frequency
context, Fouque et al. (2000a) propose a fairly general formulation of a stochastic volatility
model, the SVFPS model, which explores the existence of different time scales intrinsic in
the dynamics of prices and volatilities, and provides corrections for B&S option prices that
can be applied to price less liquid and exotic derivatives. Under fast mean reversion of the
volatility process, the model is calibrated through a linear regression of implied volatility
into the ratio log-moneyness / time to maturity. The only drawback of this model is that
the approximation that implies this linear regression for the smile surface works well just
for close to the money options4.

In this paper, we test and calibrate the SVFPS model using option data from the
Brazilian stock market. In general, financial institutions in emerging markets, are aware
that illiquidity plays an important role on their daily trading game. In particular, illiq-
uidity in the primary stock market directly propagates illiquidity to the option market,
generating more pronounced smile patterns which are compatible with stochastic volatility
models5. In the Brazilian equity market, although an acceptable level of liquidity exists
in the primary market, it is the option market which is affected by the illiquidity phe-
nomenon. For instance, even for the most liquid options, the moneyness pattern for a
single stock is very sparse, usually spaced with 0.05 or 0.1 between options. In this case,
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in order to calibrate any model to capture the dynamics of option prices, we need to make
use of options with moneyness outside the range used in the previous applications of the
SVFPS model. To this end, we propose different statistical estimators for the parameters
of the model trying to accommodate the use of such not so close to the money options.

It should be clear that we have two different goals in this work. First, to identify
the main qualitative characteristics of the volatility process which drives the dynamics of
a typical stock in the Brazilian market. In this sense, we propose answering the following
questions: Is the formulation of an ergodic mean reverting process compatible with this
market? What is the speed of mean reversion for this process? What is the variance
of the stationary distribution of the volatility process? The second goal, conditional on
the market supporting evidence of a fast mean reverting stochastic volatility process, is
related to how to calibrate the model using option data on the underlying stock including
a region of the moneyness where the model has not been applied yet.

The paper is organized in the following sequence. In Section 1, we present the
stochastic volatility model as long as the proposed extensions of the statistical estimators.
In Section 2, we explain the variogram, the estimator of the speed of mean reversion of
the volatility process. In Section 3, we present the empirical results of the paper, divided
in two parts: The results related to the dynamics of the volatility and price processes,
and the results on the calibration of the model using option prices on the previously cited
Brazilian stock TNLP4.SA. Section 4 use the model to price an exotic binary option. We
reserve Section 5 for final remarks and conclusion. The Appendix presents results on the
sensitivity and statistical properties of the estimators of the parameters which appear in
the dynamics of the stock price and stochastic volatility processes.

1 A Model for the Stock Price Dynamics

1.1 The Model

Consider the probability space (Ω, F, P ) characterizing uncertainty. The following
Stochastic Differential System describes the dynamics of the stock prices and its volatility:

dXt = µXtdt+ σtXtdWt, (1)

σt = f(Yt), (2)

dYt = α(m− Yt)dt+ βdẐt, (3)

where Wt and Ẑt are two Brownian Motions with correlation coefficient ρ, and f is a
positive function, bounded above and away from zero. Process Y is a mean reverting
Ornstein-Uhlenbeck process, which is well known to be a Gaussian process, with station-
ary distribution N(m, ν2), where ν2 =β2

2α .
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In this model, volatility is an ergodic process that mean reverts to a long term mean
which can be directly obtained from the long term mean m of process Y , once one defines
an explicit form for function f6. In particular, the parameter α, the volatility mean re-
version speed, plays an important role to determine the relative time scales which appear
in the problem of modelling the dynamics of stock and option prices. If α lies in a region
such that the volatility process presents a rapid time-scale flutuation relative to the time
horizon of the option contracts, we say that the volatility is under a fast mean reversion
regime.

This model presents some interesting characteristics. First, it produces leptokurtic
and skewed density functions for the stock prices7. Second, it accounts for correlation be-
tween volatility and asset prices, a characteristic frequently identified in financial empirical
studies8. Third, provided that the volatility mean reversion speed lies in the region that
characterizes fast mean reversion, it presents very simple estimators based on the implied
volatility surface to correct B&S prices to account for volatility randomness.
In the next two subsections we make the last point precise.

1.2 Option Pricing

This model characterizes an incomplete market, where the basic instruments (stocks
and bonds) are not enough to span all the derivatives, specifically because volatility
presents its on independent source of uncertainty. This extra uncertainty is charged,
and its price γt is a process called the market price of volatility risk. In this context, to
preclude arbitrages, we assume the existence of an equivalent martingale measure. The
incompleteness of the market implies the existence of multiple equivalent martingale mea-
sures, each one parameterized by a particular process γ. Fixing one martingale measure
Q∗γ , let us consider pricing a derivative P on X, with payoff H(XT ) at time T . The fact
that the discounted price P̃t = e−rtPt is a Q∗γ-martingale guarantees that we can right:

Pt = E∗γ [e−r(T−t)H(XT ) | Ft] (4)

An application of Girsanov’s Theorem provides the dynamics of the asset price and
volatility under the martingale measure Q∗γ9:

dXt = rXtdt+ σtXtdW
∗
t , (5)

σt = f(Yt), (6)

dYt = [α(m− Yt)− β(ρ
(µ− r)
f(Yt)

+ γt
√

1− ρ2)]dt+ βdẐ∗t , (7)

Ẑ∗t = ρW ∗t +
√

1− ρ2Z∗t . (8)
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Equation (4) is the Feynman-Kac representation for the solution of the following partial
differential equation on P 10:

∂P

∂t
+

1
2
f(y)2x2∂

2P

∂x2
+ρβxf(y)

∂2P

∂x∂y
+

1
2
β2∂

2P

∂y2
+r(x

∂P

∂x
−P )+(α(m−y)−βΛ(t, x, y))

∂P

∂y
= 0

(9)
where

Λ(t, x, y) = ρ
(µ− r)
f(y)

+ γ(t, x, y)
√

1− ρ2, (10)

with terminal condition P (T, x, y) = H(x).

1.3 Fast Mean Reversion and Asymptotic Analysis of Option Prices

Note that Equation (9) is the partial differential equation satisfied by the price of
a derivative with payoff H(XT ) at time T . If we are able to calculate the solution of this
equation, then we now how to price derivatives under the proposed model. Under the fast
mean reversion regime for volatility, the speed of mean reversion α is such that ε = 1

α
represents a small quantity. This fact allows for the use of asymptotic theory of PDEs, to
obtain an analytical approximation for the solution of the PDE (9), with an error in the
approximation of order O(ε). Moreover, this solution does not depend on the precise level
of the volatility process, what guarantees that it is not necessary to estimate this process
with precision11. This was basically the idea used in Fouque et al. (2000b). In what
follows, we sketch the algorithm to obtain the approximate solution. Rewrite equation (9)
using ε:

∂P ε

∂t + 1
2f(y)2x2 ∂2P ε

∂x2 + ρν
√

2√
ε
xf(y)∂

2P ε

∂x∂y

+1
2
ν2

ε
∂2P ε

∂y2 + r(x∂P
ε

∂x − P ε) + (1
ε (m− y)− ν

√
2√
ε

Λ(t, x, y))∂P
ε

∂y = 0
(11)

Then, expand the price function on a power series on
√
ε:

P ε = P0 +
√
εP1 + εP2 + ε

√
εP3 + ..., (12)

where P0, P1, ... are functions of (t, x, y). After that, substitute Equation (12) into Equa-
tion (11), obtaining a geometric progression with ratio

√
ε with coefficients equal to dif-

ferent PDEs that must be solved12:

1
ε
L0P0+

1√
ε
(L0P1+L1P0)+(L0P2+L1P1+L2P0)+

√
ε(L0P3+L1P2+L2P1)+...+ = 0 (13)

Truncate the series for all terms of order higher than
√
ε and solve the four remaining

PDEs to obtain the following O(ε) approximation for the price of a derivative P with
strike price k, at time t:

P (Xt, k, σ̄) = P0(Xt, k, σ̄) + P1(Xt, k, σ̄) +O(ε), (14)
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where P0 is the B&S price of the derivative with constant volatility equal to σ̄13, which
satisfies P0(XT , k, σ̄) = H(XT ). For instance, in the case of a call option, it is given by:

P0(Xt, k, σ̄) = XtN(d1)− ke−r(T−t)N(d2),

d1 = log(Xt/k)+(r+ 1
2
σ̄2)(T−t)

σ̄
√
T−t

d2 = d1 − σ̄
√
T − t

N(z) = 1√
2π

∫ z
−∞ e−

y2

2 dy

(15)

P1 is a model correction term that satisfies P1(XT , k, σ̄) = 0, and is given by:

P1(Xt, k, σ̄) = −(T − t)(V2X
2
t

∂2P0(Xt, k, σ̄)
∂x2

+ V3X
3
t

∂3P0(Xt, k, σ̄)
∂x3

), (16)

where the partial derivatives are taken with respect to the first argument of P0. The
parameters V2 and V3 are obtained along the asymptotic analysis and have completely
different interpretations. V2 is related to the market price of volatility risk and represents
a volatility level correction that incorporates the fact that volatility is random. On its
turn, V3 is related to the third moment of the stock, and vanishes when ρ = 0. So a
natural interpretation for V3 is that it is a parameter directly related to the skewness of
the returns distribution. Fouque et al. (2000b) show that at this order of approximation
for the prices, the “smile effect” will only be reproduced in the correlated case. Even in the
case that ρ is not zero, it may happen that you will not be able to capture the particular
smile you are interested in analyzing, using this model. For instance, if ρ is negative, then
the smile14 will be downward sloping. This is reasonable, since the negative ρ contributes
to generate a fat left tail increasing prices of in the money and close to the money calls (out
of the money and close to the money puts), and a thinner right tail decreasing prices of
out of the money calls. When the option data being analyzed is composed by points that
are near the money, the effect of the extremes is not considered and this approximation for
the smile sounds reasonable. On the other hand, when we also consider out of the money
data, we are not able to perfectly reproduce a picture like Figure 1, as will be shown in
the empirical section.

In their work, they also propose an ε expansion for the implied volatility function
obtaining a very nice linear relation between implied volatility and the ratio log moneyness
to time to maturity:

I = a


 log

�strike price
asset price

�
time to maturity


+ b+O ( 1

α

)
,

a = −V3
σ̄3 ,

b = σ̄ + V3
σ̄3 (r + 3

2 σ̄
2)− V2

σ̄ .

(17)

It is demonstrated in Fouque et al. (2000b) that the last equation works as a good
approximation, when the region of moneyness that is being studied is very close to the
money15. However, for applications in Emerging Markets, this point should be reviewed
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because the liquidity is much more restrictive, with sequential strike prices of options on
the same asset, usually jumping at least 5% in the moneyness. This approximations relies
on the fact that for close to the money options, the implied volatility can be approximated
as a linear function of the option prices. Figure 6 shows the implied volatility as a function
of option prices16. Note how the out of the money call options introduce a non linearity in
the relation Implied Volatility versus Option Prices. For this reason, we decide to provide
additional estimators that avoid expanding the implied volatility and truncating its series.
Using these estimators, we expect to obtain the parameters V2 and V3 providing a better
fit of the model to the option market prices17. We relied on Equation (14) to fit the option
market prices, choosing V2 and V3 to minimize the following loss function:

K∑

i=0

Wi(Pricei − Pt(Xt, ki, σ̄))2, (18)

where Pricei represents the market price of the ith option, Pt is the proposed model price
for the ith option, ki represents the strike price of the ith option, and Wi represents a weight
value for the ith term in the sum. Note that if we use all weights equal to one, we obtain
the Ordinary Least Squares Estimator, that minimizes the sum of the absolute square
residuals in the prices. In addition, note that in this case we can implement the estimator
by making use of a linear multiple regression of Price on V2 and V3. The problem with
this approach relies on the fact that it gives too much weight to the options that are in
the money and close to the money, comparing to the options that are out of the money,
because the prices of out of the money options are much smaller than their counterparts.
For this reason, we also experienced with weight i being equal to 1

Price2i
, that minimizes the

sum of the squares of the relative error as a percentage of price. In this case, the out of the
money options play a very important role in the choice of the parameters. However, the
price that this estimator pays is that it provides big residuals for the close to the money
and in the money options. In subsection 3.2, we test the three estimators presented here.

2 The Variogram

This section introduces the variogram as a tool for the estimation of the mean
reversion rate α.
Let us first consider a discrete version of time, with N units of ∆t size18. Adopting a
discrete version of Equation (1), we define the demeaned normalized fluctuations of data
by:

Dn =
1√
∆t

∆Xn

Xn
− µ
√

∆t = f(Yn)
∆Wn√

∆t
, n = 1, ..., N (19)

where Xn, Yn and Wn represent the processes Xt, Yt and Wt sampled at time n∆t. From
the basic properties of Brownian Motion we are able to rewrite Dn as:

Dn = f(Yn)εn, n = 1, ...N (20)

where εn is a sequence of IID Gaussian random variables with mean zero and variance 1.
We further define, in order to obtain additive noise process, the log absolute value of the
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normalized fluctuations:

Ln = log(|Dn|) = log(f(Yn)) + log(|εn|) (21)

The variogram is a measure of the correlation structure of the sampled version of the
process log(f(Yt)):

V N
j =

1
N

N∑

n=1

(Ln+j − Ln)2, j = 1, 2, ..., J ; (22)

where j is the lag for which you are measuring the correlation.
Fouque et al. (2000b) show that for each j = 1, 2, ..., J , V N

j is an unbiased estimator of
2c2 + 2ν2

f (1− e−jα∆t), where c2 =variance(log|ε|), and ν2
f is the variance of the stationary

distribution of the process log(f(Yt)). Using this result, we are able to estimate by standard
non-linear regression methods, the volatility mean reversion speed α. We use the empirical
variogram from Equation (22) as the dependent variable, and adjust it to the functional
form 2c2 + 2ν2

f (1− e−jα∆t), optimizing on the parameters c, νf and α.

3 Brazilian Equity Market: Empirical Results

We divide the empirical study of this paper in two parts: The results related to the
dynamics of the volatility and price processes of a stock in an Emerging Market, and the
results regarding the calibration of the model using option prices on this stock.

3.1 Analysis of the Returns, Variogram, and Estimation of α

In a previous study, Fouque et al. (2003) identify a fast mean reversion regime
for the volatility of the returns of the S&P 500 index. We believe, it is of general inter-
est to study the qualitative properties of the volatility process that drives the prices of
financial securities. In particular, our goal in this subsection is to verify if the volatility
process driving a typical stock in an Emerging Market presents the same behavior as the
volatility process driving the S&P 500 index, an important instrument representing the
stock market of a developed country. We use historical data on TNLP4, a stock in the
telecommunications market, to answer the following interesting questions: Is the volatility
a mean reverting process? Is the speed of mean reversion comparable to the speed of mean
reversion of the S&P 500 volatility? Is the variance of the stationary distribution of the
volatility higher than the correspondent in the US. market? We believe this part of the
study deserves its own attention, because it may help researchers to better understand
the qualitative time series properties of the volatility process of a financial stock in an
Emerging market.

Figure 2 depicts the normalized TNLP4 returns, using a 30 minutes sampling rate19.
Observe that the amplitude of the returns frequently changes along time presenting the
same pattern as the S&P500 returns reported in Fouque et al (2003). This may be seen
as a first evidence in favor of a fast mean reversion regime for the volatility of TNLP4
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returns. In order to provide more intuition, we simulate prices from the discrete stochas-
tic volatility model presented in Section 2, using f(y) = ey, assuming different speeds of
mean reversion, but maintaining constant the variance ν2 of the invariant distribution of
the Ornstein Uhlenbeck process. The upper portion of Figure 3 depicts the correspondent
volatility processes for a mean reversion speed equal to 1 and 1

200 1/days respectively. The
lower portion presents the correspondent return processes. Compare Figure 2 to Figure 3
to observe the similarity between the TNLP4 returns and the return process generated by
the volatility process with high mean reversion speed.
At this point, based on the equations described in Section 2, we use the Variogram to ob-
tain an estimation of the volatility mean reversion speed α. Figure 4 shows the empirical
and the fitted variograms. Table 1 presents the estimated values and standard deviations
for the parameters of interest, α and ν. Standard deviations were obtained using a simple
non-parametric bootstrap on the residuals of the non linear regression solved to obtain
the Variogram, using a total of 10000 bootstrap samples. The estimated volatility mean
reversion speed is 0.476 1

days, with standard deviation equal to 0.0432, meaning an aver-

age decoupling time of 2.1 days, with a 95% confidence interval [1.7764, 2.4236]. The low
standard deviation indicates that if we were to design a hypothesis test to verify if the
volatility process is a mean reverting process:

H0 : α = 0
H1 : α > 0

(23)

at a 99% confidence interval, we would reject the null hypothesis, confirming the volatility
process as a mean reverting process. Moreover, the value 0.476 indicates that the volatility
process of the TELEMAR stock is under the regime of fast mean reversion.20 The volatil-
ity ν of the invariant distribution of the Ornstein-Uhlenbeck process Y was estimated to
be 0.32. In Figure 5 we present the empirical and fitted variogram for a simulated path
of the price process, using the discrete model described in Section 2, with the parameters
estimated in the present section. Now compare Figure 4 to Figure 5 to note the similarity
of the variograms obtained with real and simulated data21. This is a good indication that
we are being able to capture the empirical properties of the historical stock prices with
our model approach.

Comparing the result obtained for the speed of mean reversion of the OU process
driving the volatility of the Brazilian stock, αBrazil = 0.476 with the result obtained for
the S&P500, αUS = 0.667, we conclude that both markets have a similar pattern with
respect to the speed of mean reversion, that is a fast mean reversion regime for the volatil-
ity. On the other hand, in order to extract information from the variance of the stationary
distribution of the OU process driving the volatilities in both markets, νBrazil = 0.32 and
νUS = 0.26, we first need to estimate the effective volatility σ̄2. We estimated the effective
volatility, calculating the annualized standard deviation of the normalized fluctuations
process presented in Figure 2, obtaining σ̄2

Brazil = 43.2%22. The value obtained in Fouque
et al (2003) for the S&P500 index was σ̄2

US = 0.0723. The effective volatility is a proxy
for the variability of the volatility process. So if we compare the effective volatilities, we
see that the variability of the volatility in the Brazilian market is much higher than the
variability of the volatility in the US market. Going deeper in the model, using the addi-
tional result that σ̄2 = e2m+2ν2

, and the estimated effective volatilities, we conclude that
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the long term mean m of the OU driving the volatility process is significantly higher in
the Brazilian market, although the variance of the stationary distribution of the OU are
of the same order in both markets.

3.2 Stochastic Volatility, Option Prices and the Correction Term

Table 2 presents prices and volume for calls on the TELEMAR stock on November
13, 2002, at 13:30. In order to fit the model to the implied volatility smile generated by
the data in Table 2, we implemented the three estimators described in subsection 1.3 for
the parameters V2 and V3: the Implied Volatility estimator (IV), the Absolute Price esti-
mator (OLS), and the Weighted Relative Price estimator (WRP). First, we made use of
the complete sample of option prices, including the three out-of-the-money options (OM).
The estimated values of V2 and V3, and their respective standard deviations appear in
Table 3. Figure 7 shows the fit of each estimator to the implied volatility smile. The
implied volatilities for IV estimator were obtained using Equation (17), while for OLS
Price Estimator and WRP Estimator, were obtained calculating the implied volatilities
inverting P0 + P1 which appear in Equation (14). The standard deviations for the IV
estimator where obtained directly from the linear regression suggested in Equation (17).
Similarly, for the OLS price estimator, the standard deviations of the parameters were
obtained directly from the linear regression suggested in Equation (14). The WRP esti-
mator is based on Generalized Least Squares method. In this case, we relied on a bootstrap
scheme for regressions. We first applied a simple non-parametric bootstrap scheme, with
10000 resampling size (see Davidson and Mackinnon (1993)). As the standard deviations
were so large, and also because we can not guarantee that the relative price errors are ho-
moscedastic, we also experimented with a parametric Heteroscedastic Gaussian bootstrap
(see Cribari and Zarkos (1999)). Although not reported, the results obtained were very
similar.
Table 3 shows that the parameters for the WRP estimator have no significance24. On the
other hand, the parameters for the other two estimators are clearly significant. Observe
also that for the first two estimators, the signs and the order of the estimated parameters
are the same. Actually their values for V2 and V3 are similar to the results in Fouque et al.
(2003). On the other hand, the WRP estimator presents a much smaller V2, and V3 with
an opposite sign. From the fitting point of view, none of the estimators work well for the
complete option data set. Here we outline some possible reasons for that. Noticing that
all the options have a common maturity, and that log(1 + x) ≈ x for small x, Equation
(17) shows that the IV estimator fits a line to the implied volatilities curve as a function
of moneyness. Figure 1 shows that the implied volatility is clearly not a linear function
of moneyness. OLS Price estimator gives too much weight to the in-the-money options,
which worth much more than the out of the money options. The result is a better fit
to the in-the-money options and a deteriorate fit to the out-of-the-money options, when
compared to IV estimator. Last, WRP estimator gives too much weight to the out-of-the-
money options, and as a result one can see that it fits very well the implied volatilities of
the OM options but presents very poor results for the in and close-to-the-money options,
with a smile inverted25. We present in Table 4 the square root of the mean square error
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(SRMSE) to compare the fitting of the implied volatility surface among the different
estimators. The SRMSEj measures the average error implied by model j in fitting all
the implied volatilities. Among the three estimators the one that achieves the smallest
SRMSE is the IV estimator. Although the new estimators do not present a good per-
formance with respect to the fitting of the implied volatility curve, the WRP estimator
presents a very reasonable result when the performance measure is shifted to the relative
price error |Pobserved−(P0+P1)|

Pobserved
. Figure 8 shows the relative price errors for the three estima-

tors. The relative errors for the WRP estimator are all less than 10% while errors for the
other two estimators blow up for OM options.

Searching for a region of the data where the model presents a fair fit, we adjust
the estimators using only in and close-to-the-money options data, leaving aside the three
OM observations. From Table 2 we can see that although we discard information on the
call option with strike 28, which presents a considerable volume, we include the options
with strike 24 and 26 which present the highest volume of that day. Table 5 presents the
parameters values and standard deviations, and Table 6 presents SRMSE for the different
estimators. The first interesting thing to note is that the values of V2 and V3 are very
similar for the three estimators. This indicates that the region of OM data is the main
responsible for the distinction between the estimators. We can also see from Table 5 that
all the parameters are significant, and that in particular WRP estimator that presented
the highest standard deviations on Table 3, presents the smallest now. Table 6 shows that
the IV estimator has a very good fit with an average error of 0.6% in the implied volatility.
Figure 9 shows the fit of each estimator to the implied volatility smile.

4 Application: Pricing an Exotic Derivative

In this Section, we present an application of the model for pricing an exotic option, using
the calibration obtained in 3.2 for in and close to the money options.

4.1 Pricing an European Binary Option

Denote by Xt the stock price at time t. An European binary call with strike price k, and
maturity T , pays a fixed amount U on date T , if XT > k, and pays zero if XT ≤ K. Its
payoff function is:

H(XT ) = U1{XT>k} (24)

where 1 denotes the indicator function.
According to the results outlined in Section 1.2, the price of this option is obtained by the
following expectation under the risk neutral measure:

Pt = Ue−r(T−t)E∗γ [1{XT>k} | Ft] = Ue−r(T−t)Q∗γ [XT > k | Xt] (25)

The Black & Scholes price of this option is obtained by using the fact that, under the
martingale measure in the B&S model, Xt follows a geometric Brownian Motion with
drift r and constant diffusion coefficient σ̄. This implies that logXT under B&S follows a
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normal distribution with mean logXt + (r− 1
2 σ̄)(T − t) and variance σ̄2(T − t). With this

information we are able to calculate:

Q∗B&S [XT > k | Xt] = Q∗B&S [logXT > log k | Xt] = N(d2), (26)

where N(d2) is defined in Equations (15).
Using Equation (26) we obtain the B&S price of the binary call:

P0(Xt, k, σ̄) = Ue−r(T−t)N(d2) (27)

Note that d2 depends on k. This is the only factor that contributes for different B&S
binary prices according to different strikes.
On the other hand, according to the stochastic volatility model, an approximation for the
price of such binary option should be given by:

P (Xt, k, σ̄) = P0(Xt, k, σ̄) + P1(Xt, k, σ̄) = Ue−r(T−t)N(d2) + P1(Xt, k, σ̄), (28)

where

P1(Xt, k, σ̄) = −(T − t)(V2X
2
t

∂2P0(Xt, k, σ̄)
∂x2

+ V3X
3
t

∂3P0(Xt, k, σ̄)
∂x3

), (29)

Calculating the partial derivatives which appear in Equation (29) using Equation (27),
Fouque et al. (2000b) obtained:

P1(Xt, k, σ̄) = U
(Xtk )e−

d21
2

σ̄2
√

2π

(
V3

σ̄
√
T − t(1− d

2
1)− (V3 − V2)d1

)
, (30)

where d1 is defined in Equation (15).
The values of the variables of interest observed on November, 13, 2002 in the

Brazilian market were Xt = 23.6, r = 0.23. Combining this information with the estimated
σ̄ = 0.432, we were able to obtain the prices for binary calls on TELEMAR stock for all
the different strikes considered in the estimation process. Figure 12 plot both the B&S
prices (solid line) and the model implied prices (dashed line) for U = 1. Note how different
these prices can be. Figure 13 plots the ratio between the correction term P1 and the total
price given in Equation (28). Note that for options with strikes 24 and 26, the correction
is greater than 10% of the model implied price, indicating that for a market maker, for
instance an investment bank, a robust model that accounts for volatility randomness
should be considered in order to price and hedge exotic options.

5 Conclusion

In this paper, we present an empirical study of the Brazilian equity market, adopt-
ing the stochastic volatility model proposed in Fouque et al. (2000a). From the theoretical
viewpoint, the model is consistently built under the assumptions of no-arbitrage. From
the practical viewpoint, it is parsimonious and not difficult to calibrate. In the first part
of our empirical study, in order to be able to compare the qualitative characteristics of
the volatility processes of a Brazilian stock and of the S&P 500 index, we estimated the
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volatility mean reversion speed, the variance of the stationary distribution of the OU pro-
cess driving the volatility process, and the effective volatility of the Brazilian TELEMAR
stock. Comparing these results with the S&P 500 results reported in Fouque et al. (2003),
we conclude that both markets are under a fast mean reversion regime, with speed of
mean reversion with the same order of magnitude, and that the variance of the volatility
process is considerably higher in the Brazilian market. This higher level for the Brazilian
volatility represents no surprise, in the sense that it is usually attributed to uncertainty
regarding economical and political events. On the other hand, the fast mean reversion
speed for the Brazilian volatility process provides room for the application of the SVFPS
model.

The fast mean reversion regime indicates that the model approximations for deriva-
tives pricing work well for close to the money options. However, in Emerging Markets,
even the close to the money options are usually 5% to 20% far from the at the money
strike. For this reason, when calibrating the model, we experimented with two different
estimators also implied from the model but not previously proposed, namely, the OLS
Price estimator, and the WRP estimator. The first gives uniform weight for the model
implied errors in the prices of options with different strikes, while the second gives more
weight for the errors in the prices of out of the money options. The empirical results
showed that none of the estimators is satisfactory when we include out of the money op-
tions in the calibration of the implied volatility curve, though the WRP estimator had a
reasonable performance in terms of relative price errors (all less then 10%). On the other
hand, when we consider close to the money options26 (moneyness from 0.85 to 1.10), the
IV estimator works reasonable well with an average error of 0.6% in the implied volatility
fitting. We then use the model implied parameters to price an exotic European call giving
an example of how far the prices can be from the correct ones, when one assumes B&S
model for pricing.

Although the two new estimators do not perform well, this paper gives one possi-
ble direction for further research on the search of new estimators27 which will allow the
application of the SVFPS model in a variety of markets, in contrast to extremely liquid
markets like the S&P 500 market.
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7 Appendix: Sensitivity and Statistical Properties of the
Estimators of α, ν, and σ̄

In this Appendix, assuming that f(y) = ey28, we derive some analytical expres-
sions, some statistical properties, and provide some simulation results for the estimators
of α, ν, and σ̄.

7.1 Properties of the Estimator of σ̄

In this Appendix, we give evidence for why DN =
∑N

n=1
D2
n
N should be used as an

estimator for σ̄2. First, we give conditions under which this estimator would be unbiased
and asymptotically consistent. Later, identifying that these conditions are not usually
satisfied, we provide empirical computational evidence based on monte carlo simulations.

By definition, according to Section 2, Dn is composed by the product of f(Yn)
and εn, where εn is N(0, 1)29. The two discrete sequences εn and Yn present correlation
coefficient ρ, which represents the correlation coefficient of the two Brownian Motions
introduced in the model on Section 1. Suppose, as a simplifying condition, that the
correlation coefficient is zero. Then, when we calculate the second moment of Dn, E[D2

n],
the independence of the Brownian Motions allows the separation of the expectation into
the product E[f(Yn)2]E[ε2n], which is clearly equal to E[f(Yn)2]. So, when ρ equals zero,
we obtain the following expressions for the mean and the variance of DN

30:

E[DN ] =
N∑

n=1

E[D2
n]

N
= E[f(Yn)2] = σ̄2. (31)

V ar[DN ] = E[D2
N ]− σ̄4 =

N∑

i=1

N∑

j=1

E[f(Yi)2f(Yj)2]E[ε2i ε
2
j ]

N2
− σ̄4. (32)
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At this point, reminding that the invariant distribution of the Ornstein-Uhlenbeck process

Y is N(m, ν2), and using the log-normal property that E[eY ] = em+ ν2

2 , we obtain, when

i = j, E[f(Yi)2f(Yj)2] = E[e4Y ] = e4m+ 16ν2

2 . For i 6= j, we use the following fact from
Fouque et al. (2000a): E[f(Yi)2f(Yj)2] = σ̄4e4ν2e−α|j−i|∆t . Making the same analysis for
the εs terms, we obtain, for i = j, E[ε2i ε

2
j ] = E[ε4] = 3, otherwise, by the uncorrelated

structure of the εs series, E[ε2i ε
2
j ] = 1. Combining all this information, and separating

terms in the summation which appears in Equation (32), we obtain:

V ar[DN ] = σ̄4

[
3e4ν2

N
+

2
N2

N−1∑

n=1

(N − n)e4ν2e−αn∆t

]
− σ̄4. (33)

The previous calculation shows that the estimator is unbiased, and a simple computa-
tion using typical values for α, ν and ∆t indicates that the estimator is also consistent,
with asymptotic volatility converging to zero. Figure 11 shows this convergence with
parameters values equal to the ones obtained in the empirical section. However, the cor-
relation coefficient is not zero, and according to the empirical literature, it is usually
negative. Making use of the discrete version of the model proposed in Section 1, and
assuming f(Y ) = eY , we realized monte carlo simulations with the set of model param-
eters fixed, except for the correlation coefficient ρ, intending to show that our estimator
for σ̄ is not sensitive to variations on the parameter ρ. For each value of ρ in the set
{−0.9,−0.8,−0.7,−0.5,−0.3,−0.1, 0.0}, we simulated 500 sample paths for the returns
and volatilities, each path with 4291 elements, the size of the TNLP4 series available in
our empirical study. For each of these 500 samples, we calculate the expectation of the
squared volatility process, calculate the expectation of the squared Dn series, and obtain
the relative error as the difference of these two quantities divided by the first, which is
the one we are looking for. In Figure 10, we plot the histograms of the relative error,
for all values of ρ. One can note that the performance of the estimator is very good and
independent of ρ, justifying our estimation procedure of using the second moment of Dn

to estimate σ̄.

7.2 Testing the Estimators of α and ν with Respect to the Correlation
Coefficient ρ

The expression for the Variogram provided in Section 2 and obtained in Fouque et al.
(2000a) is valid under the hypothesis that the correlation coefficient ρ is zero, or in other
words, that the Brownian Motions driving the asset prices and the volatility dynamics
are independent. In justifying the use of such expression to estimate the parameters
α and ν using real data, where there exists non-zero correlation between the Brownian
Motions, Fouque et al. (2000a) provide monte carlo simulations results showing that
the sensitivity of the estimator to different values of ρ is very small. In this Appendix,
we reinforce their results providing our own monte carlo experiment. For each value
of ρ in the set {−0.9,−0.8,−0.7,−0.5,−0.3,−0.1, 0.0}, using 1

α = 2.1 days and ν =
0.32, we simulated 500 sample paths for the returns and volatilities, each path with 4291
elements, the size of the TNLP4 series available in our empirical study. For each sample,
we use the Variogram method to estimate the parameters. We present on Figure 14 the

17



sensitivity of the estimators of α and ν with respect to ρ. Table 7 presents the mean and
standard deviation of the estimators, calculated using the 500 estimated values from each
different correlation coefficient ρ. Note that although the average values for 1

α are slightly
underestimated and that the average values for ν are slightly overestimated, these patterns
persist for all different values of ρ, implying just minor differences among the results.
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Notes

1For instance see Kim et al. (1998), Barndorff-Nielsen and Shephard (2002).

2According to Ait-Sahalia and Lo (1998) and Dumas et al. (1998), among others.

3The implied volatilities where obtained using the TNLP4 price at 13:30, which was of R$ 23.6, and
annualized interest rates equal to 23%. Interest rates where obtained from the term structure of the swaps
floating-fixed, available in the BM&F database (www.bmf.com.br).

4All the results reported in Fouque et al. (2000a) (2000b) (2003) are for options with moneyness in
between 0.97 and 1.03.

5For a study on the effect of liquidity in the returns of emerging market equities see Jun et al. (1999).

6A more general version of the model only assumes that Y is an ergodic Markov Ito process, and is
described in Fouque et al. (2000b).

7The randomness of volatility contributes for the excess kurtosis, while the correlation between the
Brownian Motions produces asymmetry.

8 Actually, there is strong evidence indicating that the correlation coefficient between volatility and
asset prices is negative. See Bakshi et al. (1997), Bakshi et al. (2002) and Heston (1993).

9See Fouque et al. (2000b), page 47.

10See Duffie (2001).

11Estimation of stochastic volatility processes that are latent processes, demands the use of compu-
tational intensive methods, which are very hard to calibrate, being among them, Simulated Method of
Moments (Gallant and Tauchen (1997)), Simulated Maximum Likelihood Estimator (Pedersen (1995),
Brandt and Santa Clara (2002)), or Monte Carlo Markov Chain Methods (Kim et al. (1998)).

12L0 = ν2 ∂2

∂y2 + (m− y) ∂
∂y

, L1 =
√

2ρνxf(y) ∂2

∂x∂y
−√2νΛ(y) ∂

∂y
, L2 = ∂

∂t
+ 1

2
f(y)2x2 ∂2

∂x2 + r(x ∂
∂x
− .).

13σ̄, denominated effective volatility, is defined as the square root of the expectation of the variance
process f(Y )2, with respect to the invariant measure: σ̄ =

p
E[f(Y )2], where Y is N(m, ν2). Fouque et

al. (2000b) have shown that in a fast mean reversion regime for volatility, σ̄2 can be thought as a first
approximation for the process f(Y )2, although, except for the extremely fast mean reversion case, usually
one or two extra volatility terms are necessary for a good approximation.

14The implied volatility as a function of exercise prices.

15In their S&P500 study they use option data with moneyness in between 0.97 and 1.03.

16It uses the same data that generated Figure 1.

17It is important to remark that this argument was not theoretically demonstrated.

18In our empirical study we use ∆t=30 minutes.

19The returns were normalized from 30 minutes returns to daily returns.

20We adopt the qualitative convention that a decoupling time of less than a week characterizes the fast
mean reversion regime. Quantitative tests regarding the accuracy of the asymptotic approximation might
be realized in a posterior step, when using option data.

21The only difference is a translation on the y-axis for the position where the variogram is located. This
translation is related to the difficult of estimating the variance of the logarithm of the absolute value of the
ε term that appears in Section 2. However, this translation is not important because we are just interested
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in the curvature and height of the variogram for practical purposes.

22In the Appendix we show that
PN
n=1

D2
n
N
≈E[D2

n] is an unbiased and consistent estimator for σ̄2.

23Using one year of high frequency data, the 1994 year.

24The standard deviations are very high specially due to the sample size of 7 option prices.

25We also tested an estimator with lighter weights, Wi = 1
Pi

, but the results obtained were very similar
to the results obtained for the WRP estimator.

26but not so close as in the previous studies performed using the SVFPS model.

27 for instance, using different weighting schemes as suggested in Section 1.3

28General results regarding different functions f are not necessary for our analysis, and are hard to be
derived.

29Plus the negligible term µ
√

∆t.

30The calculations of the moments of this estimator were not provided by the authors of the model
SVFPS.
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Parameters Value Std
α 0.4760 0.0432
ν 0.3220 0.0097
c 0.4784 0.0069

Table 1: Estimated Parameters Using the Variogram Method.
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Strike Prices Call Price Volume
20 4.30 418
22 2.70 418
24 1.42 3526
26 0.63 4046
28 0.25 2458
30 0.10 566
32 0.04 35

Table 2: Telemar Options Data on November 13, 2002, at 13:30.
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Estimator V2 V3

IV
−0.0248
(0.0083)

0.0015
(0.0007)

OLS
−0.0178
(0.0048)

0.0025
(0.0009)

WRP
−0.0033
(0.0260)

−0.0011
(0.0040)

Table 3: Estimated Parameters Fitting Implied Volatility Including OM Data, Using
Different Estimators.
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Estimator SRMSE

IV 0.0244
OLS 0.0454
WRP 0.0697

Table 4: A Measure to Compare the Different Estimators Fit to the Implied Volatility
Including OM Data.
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Estimator V2 V3

IV
−0.0139
(0.0096)

0.0034
(0.0007)

OLS
−0.0137
(0.0078)

0.0037
(0.0011)

WRP
−0.0143
(0.0011)

0.0026
(0.0003)

Table 5: Estimated Parameters Fitting Implied Volatility not Including OM Data, Using
Different Estimators.
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Estimator SRMSE

IV 0.0060
OLS 0.0126
WRP 0.0222

Table 6: A Measure to Compare the Different Estimators Fit to the Implied Volatility not
Including OM Data.
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ρ Mean: Estim. of 1
α Std: Estim. of 1

α Mean: Estim. of ν Std: Estim. of ν
0 1.93 0.91 0.3280 0.0447

-0.1 1.91 1.01 0.3312 0.0462
-0.3 1.99 0.93 0.3293 0.0450
-0.5 1.85 0.97 0.3371 0.0505
-0.7 1.98 0.84 0.3308 0.0435
-0.8 1.90 0.94 0.3352 0.0437
-0.9 1.91 0.86 0.3355 0.0466

Table 7: Sensitivity of the Variogram Estimator to the Correlation Coefficient ρ.
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Figure 1: B&S Implied Volatilities as a Function of Moneyness.
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Figure 2: Amplitude of TNLP4 Fluctuations and Speed of Mean Reversion.
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Figure 3: Simulated Volatility and Correspondent Returns for Small and Large Rates of
Mean Reversion.
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Figure 6: The Reason for Adopting a Better Approximation for the Model.
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Figure 7: Implied Volatility Fit Including OM Data.
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Figure 8: Relative Price Errors for the Three Estimators.
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Figure 9: Implied Volatility Fit not Including OM Data.
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Figure 10: Histograms for the Relative Error in the Estimation of σ̄ for different correlation
coefficients.
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Figure 11: Variance of the Estimator DN as a function of the Number of Normalized
Fluctuations.
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Figure 12: Pricing a Binary Option Under Stochastic Volatility.
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Figure 13: The Amplitude of the Model Correction Term.
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Figure 14: Sensitivity of the Variogram Estimators to Different Values of ρ.

41


