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The goal of this paper is to develop a reduced-form model for pricing derivatives on
the overnight rate. The model incorporates jumps around central bank (CB) meetings.
More specifically, rate changes are decomposed into fluctuations between CB meetings
and deterministic timed jumps following CB meetings. This approach is useful for prac-
titioners, since it allows the extraction of expectations regarding central bank decisions
embedded in liquid instruments, as well as the use of these expectations for the pricing of
less liquid derivatives, such as options, in a consistent manner. We discuss applications
to 30-Day Fed funds options and IDI options traded in Brazil.
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1. Introduction

According to the Bank for International Settlements (BIS) semiannual OTC deriva-
tives statistics report released on June 2017, interest rate contracts dominate OTC
derivatives markets in notional terms, and consequently, dynamism in this seg-
ment drives overall activity. The notional amount of outstanding OTC interest rate
derivatives rose from USD 368 trillion to USD 416 trillion in the first half of 2017,
BIS (2017).

Among the myriad of products available, interest rate options and, in particular,
interest rate caps play an important role in fixed-income markets. Thus, finding
accurate ways to price these options is a recurrent topic in both industry and
academia. Over the years, very sophisticated pricing models of interest rate options
have appeared in the literature. A comprehensive review of the literature on interest
rate modeling can be found in the book by Gibson et al. (2010), but despite the
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relatively complex mathematics involved, almost all models developed share the
same foundation whereby the factor structure is invariably based on latent state
variables.

On the one hand, latent factors modeling is undeniably an attractive method
since it brings more flexibility to the model and improves its fitting accuracy. On the
other hand, it is rather difficult to include an economic interpretation or an economic
event to these latent factors in order to understand the forces driving option prices.
Possibly, no single financial policy carries more weight than the Federal Reserve
funds target rate, whose movements result from the decisions made by the Federal
Open Market Committee (FOMC). Consequently, market participants use the price
of a near-to-expiration derivative to recover the probability that a change in the
target federal funds rate will be announced at the conclusion of the upcoming FOMC
meeting.

The empirical literature about the predictability of monetary changes using
derivatives is extensive. Starting with Ederington & Lee (1996) who analyze the
response of options on USA Treasury, Eurodollar, and foreign exchange futures to
a number of different macroeconomic announcements using an approach similar to
Patell & Wolfson (1979, 1981). They find that the implied volatility increases on
days without announcements and decreases after a wide range of macroeconomic
announcements. Beber & Brandt (2006) find that the risk-neutral skewness and kur-
tosis embedded in treasury bond futures options change around scheduled macroe-
conomic announcements, in addition to documenting that the implied volatility
decreases after the announcements.

Historically, practitioners have used LIBOR as a proxy for risk-free rates when
valuing derivatives. However, recently the use of LIBOR as the risk-free rate to
value derivatives was called into question by two major events. The first one, as
pointed out by Hull & White (2013), has been the credit crisis in 2008, where banks
became increasingly reluctant to lend to each other because of credit concerns. As a
result, LIBOR quotes started to rise. The TED spread, which is the spread between
three-month USA dollar LIBOR and the three-month USA Treasury rate, is less
than 50 basis points (bps) in normal market conditions. According to the authors,
between October 2007 and May 2009, it was rarely lower than 100bps and peaked
at over 450bps in October 2008.

But LIBOR suffered a much more harmful hit on its credibility when the Wall
Street Journal (WSJ) reported a marked divergence between the LIBOR rate and
the WSJ’s calculation of the rate in the default insurance market. Fouquau & Spieser
(2015) show the chronology of facts and empirically support the claim that the
LIBOR market was rigged. As a result, most derivatives dealers now use interest
rates based on overnight indexed swap (OIS) rates rather than LIBOR when valuing
collateralized derivatives. Conceptually, an OIS is an interest rate swap where the
floating rate of the swap is equal to the geometric average of an overnight index rate
over every day of the payment period. The index rate is typically a central bank
rate or equivalent, for example the Federal funds rate in the USA.
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By putting together these two elements, the overnight interest rate and meet-
ings schedule of the monetary authority, we will subsequently attempt to answer
the following question: can the inclusion of scheduled events improve the pricing
of interest rate derivatives, and if so, to what extent? Thus, the goal of this paper
is to develop a tractable reduced form model incorporating jumps on central bank
meetings to price derivatives on overnight interest rate. The key element in our
model, unlike traditional interest rate models, is the fact that we break down the
overnight rate into two components, the first one is a continuous processes govern-
ing the overnight rate between two scheduled meetings and a second one formed by
a deterministically timed jump describing central bank meetings outcome. More-
over, the fact that the monetary authority, in general, changes the target rate in
25-bps increments makes the inclusion of jumps much more straightforward than
in the case of assets such as equities, foreign exchange, or commodities with dis-
continuous changes that are better modeled as realizations drawn from continuous
distributions.

A simple extension of the Black (1976) model incorporating deterministic jumps
provides the essence of our approach. This approach is particularly useful for prac-
titioners because it allows them to extract expectations regarding central bank
decisions that are embedded in liquid instruments and to use it to consistently
price less liquid instruments such as interest rate options.

The rest of this paper is organized as follows. Section 2 presents the paper’s
motivation. Section 3 summarizes the literature on jumps. This review includes both
standard random jumps and deterministic timed jumps. Section 4 presents a model
to include deterministic timed jumps into interest rate modeling. Then, in Sec. 5, we
describe how discrete time Markov chain (DTMC) can be used to include depen-
dency among monetary decisions into our framework. Section 6 presents closed-
form solutions for pricing zero-coupon bonds and European call and put options
incorporating the market expectations about future changes in the monetary pol-
icy. Section 7 describes how practical applications of using interest rate futures for
extracting implied market expectations about future changes in the monetary pol-
icy in the USA and Brazil. In Sec. 8, we assess the quality of the model proposed in
this paper for pricing real market options traded in Brazil and in the USA. Finally,
Sec. 9 presents our concluding remarks.

2. Motivation

Monetary policy implementation refers to the tools and practices that a central
bank uses to achieve its policy objectives (Friedman 1968). By implementing effec-
tive monetary policy, the monetary authority can maintain stable prices, thereby
supporting conditions for long-term economic growth and maximum employment.
In a nutshell, the monetary authority has three instruments to attain its policy
goals: open market operations, the discount rate and reserve requirements. The
monetary authority sets interest rates either directly by changing the discount rate
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or through the use of open market operations by buying and selling government
securities which affects the target rate.

In the USA, the FOMC is the branch of the Federal Reserve Board that deter-
mines the direction of monetary policy. The FOMC conducts eight scheduled meet-
ings per year, approximately one each six weeks, and the schedule of meetings for
a specific year is announced ahead of time. Most importantly, FOMC meetings are
one of the key economic events for traders and investors alike. Although the cen-
tral bank’s policies are targeted towards controlling the short-term interest rates,
they have far reaching implications across both the yield curve and stock market.
Therefore, it goes without saying that the FOMC meetings are one of the volatile
events on the economic calendar.

To motivate our model, we present the evolution of the overnight interest rate
in the USA and in Brazil, as well as the target rate set by the monetary authority
in each country. In Fig. 1, we present the evolution of the effective federal funds
rate (EFFR) which is the interest rate at which depository institutions (banks and
credit unions) lend reserve balances to other depository institutions overnight, it
is calculated as a volume-weighted median of overnight federal funds transactions
with domestic unsecured borrowings in USA dollars. Since January 2009, the FOMC
sets a target range for the federal funds rate, which they enforce by open market
operations and adjustments in the interest rate on reserves held at the Federal
Reserve by depository institutions.

Fig. 1. The effective federal funds rate (EFFR) (blue line) and target rate/range (red line). Vertical
lines are scheduled FOMC meetings.
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As can be seen, the interbank borrowing rate lies within a range of that target
rate set by the Federal Reserve and for the selected scheduled meetings of the FOMC
we can observe the pronounced effect of jumps on overnight rate.

At the beginning of March 1999, in an environment still marked by uncertainty
about the impact of the devaluation of the Brazilian currency (BRL) on inflation,
the Brazilian government announced its intention to start conducting the monetary
policy based on an inflation targeting (IT) framework.

Most central banks use a short-term interest rate as the main instrument of
policy. Likewise, the central bank of Brazil (BCB) uses the Selic rate as the pri-
mary instrument of monetary policy. The Monetary Policy Committee (COPOM)
conducts eight scheduled meetings per year where it sets the target for the Selic
rate and delegates to the open market desk operations of the BCB to keep the
effective Selic rate close to the target. Due to transmission channels in the financial
market, the Selic target also steers the rate at which the Brazilian banks are willing
to borrow/lend to each other in overnight unsecured transaction denominated in
BRL, known as CDI rate. The equivalent of the CDI rate in the American market
can be considered as the effective federal funds rate (EFFR). Figure 2 shows the
actual overnight CDI rate and the Selic target in Brazil.

The Selic target is fixed for the period between its regular meetings and to avoid
any potential criticisms about insider information the COPOM releases its decision

Fig. 2. Overnight interest rate (CDI) (blue line) and target rate (red line). Vertical lines are
scheduled COPOM meetings.
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when the Brazilian market is closed so that the overnight rate has a deterministically
timed jump occurring at the day after the scheduled meeting.

These findings are in line with our assumption that the observable interest
rate can be break down into two components: a continuous process describing the
overnight rate between meetings and a point process which captures the monetary
decisions.

3. Asset Prices with Jumps

There are many papers on the subject of incorporating jumps in the price process
of stocks. Many of these articles model the jump occurrence as random. In this
category of models, we have the seminal paper by Merton (1976). In this paper,
the author extends the Black and Scholes model with a Poisson process to capture
abnormal price variations that the normal Black and Scholes model does not. A
more general jump model was proposed by Kou & Wang (2004) by assuming that
jumps have a double exponential distribution instead of a Normal distribution as
presented in Merton (1976). Both of these models assume that the occurrence and
size for jumps are stochastic.

Even though the literature presents that the inclusion of jumps provides a better
statistical characterization for equity prices due to considerable presence of skewness
and kurtosis, as pointed out in Eraker (2004), the response of equity prices to earn-
ings announcements is different from the unpredictable events in the models above
because the timing of the release of the information is known in advance, although
the response of the underlying price to the event is not. Thus, a natural extension
is to assume that equity prices have a deterministically timed jump occurring at
the earnings release. In Dubinsky & Johannes (2004), the authors propose a model
where the timing of earnings announcements, although not the response of equity
prices, is known in advance. To model the behavior of these events, i.e. earnings
announcements, they develop two different jump models, one with constant diffu-
sive volatility and deterministically timed jumps and one with stochastic volatility
and deterministic jumps. The paper finds that accounting for jumps on earnings
announcement dates is extremely important for pricing options. Models without
jumps on earnings announcement dates have large and systematic pricing errors
around earnings dates. A stochastic volatility model incorporating earnings jumps
drastically lowers the pricing errors and reduces misspecification in the volatility
process.

Earnings announcements are marked as special events for single-stock options
traders due to their potential impact on the underlying asset, however the influence
of scheduled events is not circumscribed to the stock market. In the USA, meet-
ing days of the FOMC are carefully monitored by market participants, because
FOMC announcements often cause strong reactions in bond and stock markets.
These observations suggest that models for pricing interest rate instruments should
take into account monetary policy actions by the Federal Reserve, and this channel
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is set forth in the work by Piazzesi (2005). The author develops an arbitrage-free
time-series model of yields in continuous-time that incorporates central bank policy.
In her model, the Federal Reserve’s target rate is a pure jump process and jump
intensities depend on the state of the economy and the meeting calendar of the
FOMC. The author shows that her methodology improves the fit of the yield curve
and introduces important seasonalities around FOMC meetings.

Although presenting advances in interest rate related literature, Piazzesi’s (2005)
model relies on a structural approach where some latent variables and parameters
are unobservables which makes her model subject to different levels of model risk
and thus of limited use for practitioners. Therefore, in this paper we contribute to
the literature by proposing a tractable reduced-form model to price derivatives on
overnight interest rate. The model breaks down short-term interest rate changes
into fluctuations between meetings and deterministic timed jumps around central
bank meetings.

4. Interest Rate Process with Scheduled Events

The uncertainty in our model is introduced through two stochastic processes: the
continuous overnight interest rate (rt)t≥0 and (θt)t≥0 which reflect the changes in
the target rate defined by the central bank in its scheduled meetings. Both processes
are defined on filtered probability space (Ω,F , {Ft}, P), where Ft is the natural
filtration generated by (rt, θt).

To properly model deterministically timed events, we also assume that there is a
deterministic counting process Nt, counting the number of predictable events that
occur up to time t and define τj for the time of the jth meeting after a starting
time t:

Nt =
∑

j

1I{τj≤t}, (4.1)

where (τj)j≥1 are increasing predictable stopping times as defined in Brémaud
(1981).

According to our model’s assumptions, the observable overnight interest rate
for a given time t is the result of two components, the first one is a continuous
overnight rate (rt)t≥0 process which describes the overnight rate evolution between
two central bank meetings and the second one captures monetary decisions, (θt)t≥0:

Rt = rt + Mt. (4.2)

where Mt =
∑Nt

j=1 θj is the sequence of changes in the target rate implemented by
the monetary authority up to time t.

Therefore, we assume that the observable overnight interest rate is given by the
stochastic differential equation (SDE) of the form

dRt = µ(rt)dt + σ(rt)dWt + dMt, (4.3)

where µ(·) and σ(·) satisfy the usual conditions for existence and uniqueness for
the solution of Rt (Theorem 5.2 in Øksendal (2000)), (Wt)t≥0 is a one-dimensional
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Brownian motion, (Mt)t≥0 is a pure jump process with jumps at the scheduled
events distributed as θj ∼ Ψ and (Nt)t≥0 is the deterministic counting process.
The process (Rt)t≥0 is right-continuous, adapted and has only a finite number of
discontinuities in each interval [0, t], processes Mt and Wt are also independents.

In our framework, Eq. (4.2) represents the observable overnight interest rate,
Rt which is the sum of two terms: the overnight interest rate, rt prevailing between
two consecutive meeting τj and τj+1 and the second term, Mt =

∑Nt

j=1 θj which
describes the sequence of changes, θj in the target rate implemented by the mone-
tary authority up to time t. The exact expression to characterize the dynamics of
the observable overnight interest rate in (4.3) still requires the functional form for
describing the overnight interest rate, rt, between two consecutive meeting and this
will be provided in Sec. 6.

Most applications of models with jumps assume that Ψ is a continuous distribu-
tion, such as the normal distribution in Merton (1976) and in Dubinsky & Johannes
(2004) or the double exponential in Kou & Wang (2004). The main reason is that
these papers are modeling the impact of jumps on stock prices and it is not possible
to define a priori the magnitude of the jump, however when dealing with monetary
decisions, the outcome can be defined in a discrete set A. In practice we observe that
θj assume values that are multiples of some known quantity, for instance 25 bps.

According to our model’s assumptions, between two central bank meetings, the
interest rate diffuses, that is, they have continuous sample paths with Brownian
shocks. At a scheduled meeting (jump time, τj), the interest rate jumps by a random
size θj . Our model does not include randomly timed jumps in prices for two reasons.
First, we are primarily interested in the impact of scheduled meetings on option
prices and, as history shows, there is a small probability of an emergency move
outside of a scheduled meeting.a Second, if randomly timed jumps were included
it would be necessary to set additional assumptions and consequently the model
would be much more complex and less intuitive.

The main thrust of the paper is to provide a consistent way for pricing different
interest rate derivative contracts taking into account policy-related events, such as
FOMC meetings. Therefore, to price interest rate derivatives, we need a measure,
Q, equivalent to P, such that the discounted price processes are martingales. The
pricing approach is based on Piazzesi (2010). The martingale restriction requires the
usual assumption that the drift of a tradable asset, P (t, T ), under Q has the risk-free
rate of interest as the expected growth rate. This assumption ensures that between
deterministic jump times, the discounted price process is a Q-martingale. At a jump
time, for prices to be a martingale, we require that EQ[P (τj , T ) | Fτj−] = P (τj−, T )
which implies that at a deterministic time, there can be no profit.

aIn the USA, there have been seven changes outside of FOMC meetings from 1994 to 2017.
Likewise, in Brazil since 1999, the central bank has modified the target rate in an extraordinary
meeting only once in a total of 117 regular meetings.
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Therefore, we can state that there exists a measure Q equivalent to P with
Radon–Nikodým derivative

dQ

dP
= exp

(
−
∫ T

0

γsdWs − 1
2

∫ T

0

γsds

)
Nt∏
j=1

Xτj . (4.4)

To ensure the existence of the Radon-Nikodým derivative γ and X must satisfy
mild regularity conditions. For the diffuse component we assume that γs satis-
fies the Novikov condition. For the jump part, we require that Xτj > 0 and that
EP[Xτj | Fτj−] = 1. These conditions can be simultaneously met if we assume the
jump size in the density process is equal to the ratio of jump size densities

Xτj =
ΨQ(θτj , τj−)
ΨP(θτj , τj−)

. (4.5)

Unlike diffusion models where only the drift can change subject to regularity
conditions, in a jump model there are virtually no constraints other than common
support, since ΨQ and ΨP are both positive. Therefore, given the mild assumptions
required, the change of measure for jump sizes occurring at deterministic times is
extremely flexible, for instance we could assume that Ψ is a Normal distribution,
such as in Dubinsky & Johannes (2004), but for our purpose we define that θ can
only assume values defined in a discrete set A.

In general, the presence of jumps generates an incomplete market, due to the
inability to hedge the continuously distributed jumps. In a way, to perfectly hedge
jumps, one requires as many hedging instruments as the cardinality of the jump
size distribution. With normally distributed jumps, this requires an infinite number
of hedging instruments. On the other hand in our framework the cardinality is by
construction finite, (card(A) < ∞). This feature circumscribes our analysis to the
standard complete market framework where there is a unique martingale measure
Q equivalent to P used to calculate all instruments described in this paper.

5. Modeling (θt)t≥0 as a DTMC

Despite their highly unpredictable durations and amplitudes, business cycles tend
to follow a fairly repetitive pattern as the economy gradually progresses through
stages rather than switching suddenly from boom to bust and back to boom. Busi-
ness cycles are highly intertwined with the push and pull of the monetary cycle
whereby central banks transition from stimulating the economy during recessions
to tightening money supply when inflationary pressures build up. As noted earlier,
the main mechanism adopted by central banks for implementing monetary policy is
the management of short-term interest rates using a set of administered rates (i.e.
target rate).

In Fig. 3, we show the evolution of the target rate in Brazil and the monetary
decisions set forth by the Brazilian central bank from January 2010 up to January
2018. From the data it is possible to identify periods where the central bank of Brazil
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Fig. 3. Persistence on monetary decision in Brazil — sample from 2000Q1 to 2018Q1. Selic target
rate (blue line — left axis) and monetary decisions on scheduled meeting (red bars — right axis).
Shaded areas represent the Brazilian interest rate lossening-cycle.

increased the target rate and periods of monetary loosening, where the central bank
decided to decrease the interest rate (the shaded areas).

Over the past 17 years the central bank’s decision to hike the rate was the
outcome in 24 scheduled meetings, τj (i.e. P(θτj > 0) = 0.37), and the highest
increase was 75 bps in the meeting held in April 2010. On the other hand, the
central bank decreased the interest rate in 21 meetings (P(θτj < 0) = 0.32), and
the largest reduction was 100 bps. In turn, the interest rate was held unchanged in
20 scheduled meetings (P(θτj = 0) = 0.31). Though the unconditional probabilities
are uniform and therefore uninformative, the conditional probabilities provide a
much more valuable source of information, P(θτj > 0 | θτj−1 > 0) = 0.83, P(θτj <

0 | θτj−1 < 0) = 0.95 and P(θτj = 0 | θτj−1 = 0) = 0.75. In other words, in a loose
(tight) monetary cycle the probability of observing two reductions (increases) in a
row is higher that two consecutive decisions with opposite signs.

Therefore, we do have elements to state that the process (θt)t≥0 itself depends
on the monetary cycle pursued by the Central Bank and therefore is not tempo-
rally independent. A feasible way to incorporate simultaneously uncertainty and
dependence on central bank decisions is by employing a discrete time Markov chain
(DTMC) of order k for modeling (θt)t≥0.

A Markov chain with countably many states and transition matrix P with ele-
ments psi, has transition probabilities P(θτj = ai | θτj−1 = s, θτj−2 = sj−2, . . . , θτ0 =

1850037-10
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s0) = psi. The n-step transition matrix with elements p
(n)
si = P(θτj+n = ai | θτj = s)

equals Pn.
For the sake of simplicity we assume that (θt)t≥0 is an ergodic Markov chain

of order one. A Markov chain is called ergodic if there exists t such that for all
x, y ∈ Ω, p

(t)
xy > 0. For finite Markov chains, the following pair of conditions are

equivalent to ergodicity:

(1) Irreducible: For all x, y ∈ Ω, there exists t = t(x, y) such that p
(t)
xy > 0.

(2) Aperiodicb: For all x ∈ Ω, gcd{t : p
(t)
xx > 0} = 1.

These assumptions are not too restrictive because: (i) one can always write a
k-order DTMC as a first order DTMC, (ii) periodicity is not a rational behavior for
a policy-maker following a Taylor-like policy rule, Taylor (1993) and (iii) the set A
given by all potential values of central bank’s decision about (θt)t≥0 is finite.

Usually θτj assume values that are multiples of some known quantity, for instance
25 bps. Therefore, we define A as the finite set of possible outcomes in one Central
Bank meeting. Typical elements of A are a = k × 0.0025 such that k ∈ Z. Addi-
tionally, once θτj is DTMC its marginal distribution P(θτj = ai) over A at time τj

is described byc

P(θτj+n = ai) =
∑

s

P(θτj+n = ai | θτj−1 = as)P(θτj−1 = as) =
∑

s

psp
(n)
si , (5.1)

where transition probabilities P(θτj+n = ai | θτj−1 = as) satisfy the Chapman–
Kolmogorov equation for n consecutive central bank meetings.

A convenient simplification arises in Eq. (5.1) when there is only one scheduled
meeting (n = 1) before the derivative or bond maturity. In this case, θτj−1 ∈ Ft

given that τj−1 ≤ t and thus Eq. (5.1) simplifies to:

P(θτj = ai) = P(θτj = ai | θτj−1 = as). (5.2)

Such simplification is important to calibrate the transition probabilities from market
prices.

6. Zero-Coupon Bond Pricing

The standard no-arbitrage theory states that a zero-coupon bond (ZCB) paying 1
at maturity T has price, P (t, T ), at time t given by:

P (t, T ) = EQ(e−
R

T
t

Rsds | Ft), (6.1)

with boundary condition P (T, T ) = 1.

bHere, gcd stands for the greatest common divisor.
cA technical question could arise when dealing with DTMC evolution. Equation (5.1) describes
the probability for the process be at state θτj = a, a ∈ A after n steps. For our purpose, we
might need the probability that the process hit by the first time the state θτj = a ∈ A. Though
conceptually different this distinction is not relevant when dealing with DTMC that walks few
steps as in our case.
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Duffie et al. (2003) shows that assuming the short-term interest rate process,
Rs is affine implies that the zero-coupon bond prices must have the following form:

P (t, T ) = eA(t,T )+B(t,T )Rt , (6.2)

with terminal conditions A(T, T ) = 0 and B(T, T ) = 0. The coefficients A(t, T ) and
B(t, T ) can be computed in closed form for a few short-term interest rate processes,
(Rt)t≥0. When a closed form solution is not available it is still possible to obtain a
solution numerically, for example by the Runge–Kutta method.

According to our model’s assumptions, the observable short-term interest rate
process, (Rt)t≥0, is the result of two components, the first one is a continuous
overnight rate (rt)t≥0 process which describes the overnight rate evolution between
two central bank meetings and the second one captures monetary decisions, (θt)t≥0,
thus:

Rt = rt + Mt. (6.3)

Here, Mt =
∑Nt

j=1 θj is the sequence of changes in the target rate implemented by
the monetary authority up to time t.

Therefore, plugging Eq. (6.3) into Eq. (6.1), we have:

P (t, T ) = EQ(e−
R T

t
Rsds | Ft) (6.4)

= EQ(e−(
R T

t
rsds+

R T
t

Msds) | Ft). (6.5)

The actual evolution for the short-term rate in Brazil is shown in Fig. 2, where it
is possible to identify the jumps when a COPOM meeting occurs and that between
meetings the rate seems to fluctuate around a certain value without any large devi-
ation regardless of the interest rate level. This type of behavior is present in models
which include mean reversion and absence of level effect, i.e. the volatility of the
interest rate increases with the level of the interest rate, Chan et al. (1992).

One specification for the short-term interest rate that satisfies these two empir-
ical facts is the standard mean reversion Gaussian interest rate model developed
initially by Vasicek (1977):

drt = κ(Θ − rt)dt + σdWt, (6.6)

where (Wt)t≥0 is a one-dimensional Brownian motion, σ > 0 is the diffusion coeffi-
cient, Θ is the long-term interest rate level and κ > 0 is the speed of reversion.

Assuming that the overnight rate between scheduled meetings can be described
by Eq. (6.6) it is possible to obtain an arbitrage-free formula for a zero-coupon bond
that takes into consideration the future outcomes of the monetary authority.

Proposition 6.1. The no-arbitrage price of a zero-coupon bond is given by

P (t, T ) =
∑
m

(e−MT +A(t,T )+B(t,T )rt)Q(MT = m), (6.7)
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where A(t, T ) and B(t, T ) are standard Vasicek coefficients given by

B(t, T ) = −1 − e−κ(T−t)

κ
, (6.8)

A(t, T ) =
(

Θ − σ2

2κ2

)
[B(t, T ) − (T − t)] − σ2B(t, T )2

4κ
, (6.9)

and Q(MT = m) are risk-neutral probabilities calculated by Eq. (5.1) and NT

is the number of scheduled meetings up to the bond maturity. The component
MT =

∑NT

j=1 θj captures all monetary policy decisions at scheduled meetings over
the interval [t, T ].

Proof of Proposition 6.1. The proof is quite straightforward, it starts by rewrit-
ing Eq. (6.4) as

P (t, T ) = EQ(e−(
R

T
t

rsds+
R

T
t

Msds) | Ft)

= EQ[EQ(e−(
R

T
t

rsds+
R

T
t

Msds) | Ft, MT = m)]. (6.10)

By definition MT is a discrete random variable, because MT =
∑NT

j=1 θj and
θj ∈ A with card(A) < ∞. Therefore, the outer expectation becomes

P (t, T ) =
∑
m

e−MT EQ(e−
R T

t
rsds | Ft, MT = m)Q(MT = m), (6.11)

where the remaining expectation can be calculated using the framework of Duffie
et al. (2003) by the fact that the Vasicek model is affine and has a closed form
solution for A(t, T ) and B(t, T ), so Eq. (6.11) becomes

P (t, T ) =
∑
m

(e−MT +A(t,T )+B(t,T )rt)Q(MT = m). (6.12)

So conditioning on MT we can solve (6.10) as a classical ZCB pricing in a
Vasicek model with a deterministic time-dependent drift. Finally, the ZCB price is
obtained by calculating over all possible values of MT weighted by their probability.
By introducing time-dependent parameters in the model, we can match the current
market’s assessment of the future target rate, while retaining the overall simplicity
of the term-structure model. This approach is advocated by, especially, Hull &
White (2013) who extend the Vasicek and CIR models (Cox et al. 1985) with time-
dependent parameters.

6.1. Options pricing

Interest rate futures are used by investors, either to hedge against interest rate
changes or to assume outright positions. In addition, futures contracts are in general
very liquid, which allow investors to trade their expectations about the future deci-
sions of the monetary authority. On the other hand, interest rate options are not
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so liquid but their variety of payoff functions makes this derivative suited for some
trading strategies such as all-or-nothing payoff.

For instance, binary options provide market participants the right payoff to trade
on central bank futures decisions about the target rate. Binary options pay one unit
of cash if the overnight interest rate Rt is equal or above the strike at maturity.
Binary options are generally considered “exotic” instruments and there is no liquid
market for trading these instruments between their issuance and expiration. The
lack of liquidity to unwind a position before the maturity makes binary options less
appealing in practice, because sometimes traders may need to adjust their position
after a new economic indicator, which may impact central bank decision on (θt)t≥0,
is released.

As observed earlier, part of the USA interest market has switched to overnight
interest rate derivatives, such as overnight indexed swaps, OIS. An overnight
indexed swap (OIS) is an interest rate swap where the periodic floating rate of the
swap is equal to the geometric average of an overnight index rate over every day
of the payment period. In addition to swaps, other derivatives can have overnight
rates as their underlying such as options, for instance. In fact, we can point out
IDI options traded at the Brazilian securities and derivatives exchange, B3, as an
example of overnight indexed option. For more details about IDI options, see Brace
(2008) or Carreira & Brostowicz (2016).

The underlying asset for IDI options is the IDI index defined as the accumu-
lated overnight interest rate (Rt)t≥0. Therefore, if we associate the continuously-
compounded overnight interest rate to (Rt)t≥0, then the IDI index is given by

IDIT = IDIte
R T

t
Rsds. (6.13)

As can be seen, IDI options have a peculiar feature which is not shared by usual
exchanged-traded options: they are asian options, and their payoff depends on the
integral of the short-term rate through the path between the trading date t and the
option maturity date T which will be impacted by the decision from the monetary
authority that will take place on a scheduled meeting at time τj , where t < τj < T .

Theoretical results of interest rate Asian options can be found in Geman & Yor
(1993) and Longstaff (1995). Pricing IDI options was recently studied by Almeida
& Vicente (2012) by specifying the overnight rate process, (rt)t≥0 as a sum of N

processes with Θ = 0 for all N in (6.6). But none of these papers acknowledge
the role played by scheduled meetings, thus our model complements the above
mentioned works.

An intermediate result relevant for pricing overnight interest rate options is the
next lemma:

Lemma 1. If (rt)t≥0 is a Vasicek process then:

(1) Distribution of integrated process∫ T

t

rsds ∼ Normal (M(t, T ), V (t, T )).
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(2) Zero-coupon bond price

P (t, T ) = e−M(t,T )+ V (t,T )
2 , (6.14)

where

M(t, T ) =
rt − Θ

κ
(1 − e−κ(T−t)) − κ(T − t), (6.15)

V (t, T ) =
σ2

2κ3
(2κ(T − t) − 3 + 4e−κ(T−t) − e−2κ(T−t)), (6.16)

parameters above have the same definition as in Eq. (6.6), i.e. σ > 0 is the diffusion
coefficient, Θ is the long-term interest rate level and κ > 0 is the speed of reversion.
We do not prove this lemma because its proof is well known.d

Denote by Call(T, K, Rt) the time t price of a call option on the IDI, with
maturity T and strike price K. Then

Call(T, K, Rt) = EQ[e−
R

T
t

Rsds(IDIT − K)+ | Ft]. (6.17)

Therefore, assuming that the observable short-term interest rate process,
(Rt)t≥0, is, as Eq. (6.3) implies, the result of two components, the first one describ-
ing monetary decisions, (θt)t≥0 and the second one a continuous overnight rate
(rt)t≥0 given by Eq. (6.6) which describes the overnight rate evolution between two
central bank meeting, it is therefore possible to obtain an arbitrage-free formula
for pricing IDI that takes into consideration the future outcomes of the monetary
authority.

Proposition 6.2. The no-arbitrage price for a European IDI call option is given
by

Call(T, K, Rt) = EQ[e−
R T

t
Rsds(IDIT − K)+ | Ft]

=
∑
m

BS�
call((rt |MT = m), K̂i, T, V (t, T ), P (t, T ))Q(MT = m),

(6.18)

where

BS�
call((rt |MT = m), K, T, V (t, T ), P (t, T ))

= IDItN(d1) − K̂mP (t, T )N(d2), (6.19)

d1 =
log

IDIt
K̂m

+ log P (t, T ) +
V (t, T )

2√
V (t, T )

, (6.20)

d2 = d1 −
√

V (t, T ), (6.21)

dHowever, the interested reader can consult Mamon (2004).
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with

MT =
NT∑
j=1

θj capturing all monetary policy decisions at scheduled meetings over

the interval [t, T ],

K̂ = Ke−MT is the corrected strike price,

P (t, T ) and V (t, T ) as in (6.14) and (6.16), respectively.

Proof of Proposition 6.2. The proof consists of applying the tower property
of conditional expectation, but first expression (6.17) can be simplified after plug-
ging (6.3) and (6.13):

Call(T, K, Rt) = EQ(e−
R T

t
Rsds(IDIT − K)+ | Ft)

= EQ(e−
R T

t
(rsds+Msds)(IDIte

R T
t

(rsds+Msds) − K)+ | Ft)

= EQ((IDIt − e−
R

T
t

rsdsKe−
R

T
t

Msds)+ | Ft). (6.22)

As stated earlier, Ms =
∑Ns

j=1 θj captures all monetary policy decisions at sched-
uled meetings over the interval [t, s], so using the tower property of conditional
expectation we can write:

Call(T, K, Rt) = EQ[EQ((IDIt − e−
R

T
t

rsdsKe−
R

T
t

Msds)+ | Ft, MT = m)]. (6.23)

By definition MT is a discrete random variable, because MT =
∑NT

j=1 θj and
θj ∈ A with card(A) < ∞. Therefore, the outer expectation becomes

Call(T, K, Rt)

=
∑
m

EQ((IDIt − e−
R

T
t

rsdsKe−
R

T
t

Msds)+ | Ft, MT = m)Q(MT = m).

(6.24)

The expectation can be solved using Lemma 1 and the solution follows as in
Almeida & Vicente (2012) but here with modified strike price K̂ which depends
explicitly on MT and Θ �= 0:

Call(T, K, Rt) =
∑
m

(IDItN(d1) − K̂mP (t, T )N(d2))Q(MT = m). (6.25)

This strategy of conditioning on all possible values of MT is conceptually equiv-
alent to Merton (1976) to price options when random jumps are present. Curran
(1994) also adopted a similar strategy for pricing options where the underlying asset
is the weighted arithmetic average value of a stock’s portfolio.

If Put(T, K, Rt) is the price at time t of the IDI put with strike K and maturity
T , then by the put-call parity we state the next result without proof.
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Proposition 6.3. The no-arbitrage price for a European IDI put option is given
by

Put(T, K, Rt) = EQ[e−
R T

t
Rsds(IDIT − K)+ | Ft]

=
∑
m

BS�
put((rt |MT = m), K̂i, T, V (t, T ), P (t, T ))Q(MT = m),

(6.26)

where

BS�
put((rt |MT = m), K, T, V (t, T ), P (t, T )) = K̂mP (t, T )N(−d2) − IDItN(−d1),

(6.27)

and P (t, T ), d1,2 and V (t, T ) are defined as stated at Proposition 6.2.

The results presented in the above propositions were obtained assuming that the
interest rate is described by a Vasicek process. The adoption of a different model
for the overnight interest rate is straightforward, the difference would be in terms
BS�

call and BS�
put.

Let us now consider the general case of pricing an interest rate contingent claim
V (T, RT ), in a model with a stochastic short-term interest rate process (Rt)t≥0

subject to monetary policy changes. From the general theory we know that the
price at t of V (T, RT ) is given by the formula

V (t, T, Rt) = EQ[e−
R T

t
RsdsV (T, RT ) | Ft]. (6.28)

The expectation in Eq. (6.28) is difficult to evaluate because in order to compute
the expected value we have to obtain the joint distribution (under Q) of the two
stochastic variables (the integral of Rt and V (RT , T )) and finally integrate with
respect to that distribution. Additionally, we also need to include the monetary
policy changes. However, we can evaluate the expectation in Eq. (6.28) by using
P (t, T ) as the numeraire. In this case the equivalent martingale measure associated
with using P (t, T ) as the numeraire is the T -forward measure pioneered indepen-
dently by Geman (1989) and Jamshidian (1989). This trick allows us to present a
more general version of Propositions 6.2 and 6.3.

Proposition 6.4. An option with integrable claim payoff V ∈ L1(Q,FT ) is priced
at time t as

V (t, T, Rt) =
∑
m

[P (t, T, m)EQT [V (T, RT , m) | Ft, MT = m]]Q(MT = m), (6.29)

where the T -forward measure QT is equivalent to Q.

Proof of Proposition 6.4. Using P (t, T ) as the numeraire, Geman (1989) and
Jamshidian (1989) show that Eq. (6.28) can be written as:

V (t, T, Rt) = EQ[e−
R

T
t

Rsds | Ft]EQT [V (T, RT ) | Ft]. (6.30)
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The expectation under Q of a product of two terms in Eq. (6.28) is converted
into the product of two expectations in Eq. (6.30), one under Q and the other under
the T -forward measure QT , which is easier to evaluate. Using Eq. (6.3) and resorting
to the method of conditioning on all possible values of MT , Eq. (6.30) became

V (t, T, Rt) = EQ[EQ[e−(m+
R

T
t

rsds) | Ft, MT = m]]

×EQT [EQT [V (T, rT , m) | Ft, MT = m]], (6.31)

where MT =
∑NT

j=1 θj , in addition MT is a discrete random variable, because θj ∈ A
with card (A) < ∞. Therefore, the outer expectation becomes

V (t, T, Rt) =
∑
m

EQ[e−(m+
R T

t
rsds) | Ft, MT = m]Q(MT = m)

×
∑
m

EQT [V (T, rT , m) | Ft, MT = m]QT (MT = m). (6.32)

To complete the proof, first we need to use the Radon–Nikodým derivative dQT
dQ

to change from Q to QT , which can be written as

QT (A) =
∫

A

e−
R

T
0 rud̊u

P (t, T )
dQ. (6.33)

Then, defining A = {MT = m} and using the fact for a random variable Y it is
possible to write EQ[Y 1I{MT =m}] = EQ[Y |MT = m]Q(MT = m). Recognizing the
variable Y as the Radon–Nikodým derivative dQT

dQ
we can solve Eq. (6.33) and so

rewrite Eq. (6.32) only in term of Q. The final step uses the no-arbitrage pricing
formula for a zero-coupon bond, P (t, T, m) = EQ[e−(m+

R T
t

rsds) | Ft, MT = m] and
after grouping terms the result holds.

If we use V (T, RT ) = (IDIT − K)+, where IDIT is the forward value for the
current IDIt, we have that under the T -forward measure, the forward IDI index is
a martingale, so applying the results from Proposition 6.4 we can obtain the Black
(1976) formula adjusted for the presence of scheduled meetings of the monetary
authority as presented in the next proposition.

Proposition 6.5 (Black with deterministic timed jump). The modified Black
(1976) model for pricing a IDI call option under monetary changes is given by

Call(T, K, Rt) =
∑
m

[P (t, T, m)(IDIT N(d1) − KN(d2))]Q(MT = m), (6.34)

where

IDIT =
IDIt

P (t, T, m)
, (6.35)

d1 =
log

IDIT
K

+ 0.5σ2
IDI(T − t)

σIDI

√
T − t

, (6.36)

d2 = d1 −√
σIDI. (6.37)
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The proof of this result is obtained directly from Proposition 6.4.
In case where we are dealing with a put option, the put-call parity pro-

vides the result. The inclusion of this proposition is motivated by the fact that
from a practitioner’s point of view, the result stated in Proposition 6.5 is very
convenient.

7. Implied Market Expectations of Monetary Policy

In the USA, the Federal Reserve monetary policy has traditionally focused on con-
trolling short-term interest rates through the Fed funds rate. Therefore, it follows
that future short-term rates will be determined by future FOMC target ranges.
Fed funds futures can be used to help infer the probabilities of future target ranges
because their values are tied directly to the expected Fed funds rate. Moreover, these
contracts are actively traded. In fact, two popular tools, the CME’s FedWatch tool
and Bloomberg’s World Interest Rate Probability (WIRP) measure,e both use Fed
funds futures to infer the implied probability of future FOMC decisions. Although
these tools are useful, the methods only allow for two outcomes at each FOMC
meeting and therefore restrict the size and direction of possible rate moves.

An alternative for third-party estimation of implied market interest rate prob-
ability is to recover directly the monetary authority decision probabilities, using
market data on derivatives over interest rates. To do so, we used regularization
techniques to deal with the ill-posedness nature of the problem as suggested by
Müller (2009) and Zubelli (2005).

Let us suppose there are future contract quotes, F�(t, T ), representing the price
at time t of an interest rate future with maturity T . By assuming that the futures
contract resembles a zero-coupon bond we can use the result from Sec. 6 to price
it and we can further calculate the pricing errors as E(t, T ) = F�(t, T )− FM (t, T ),
where FM (t, T ) represents the future price which incorporates monetary policy
changes in scheduled meetings as derived in Eq. (6.7). Therefore, based on Müller
(2009) we extract the implied risk-neutral probabilities, Q, using the Tikhonov reg-
ularization method. Regularization techniques are heavily dependent on the exis-
tence of priors and we shall denote this prior as Q�

t . Thus, we find Q that solves
the following regularizated problem:

min
Qt

1
2

QtE(t, T )T E(t, T )Qt + γ‖Qt − Q�
t‖2, (7.1)

s.t.



∑

Qt(θτj+n) = 1, ∀n,

Qt(θτj+n) ≥ 0.
(7.2)

Here, we have used as prior Q�
t = Qt−1 that is, the result for t−1 is used as a prior

for the problem in t. As in Müller (2009) we have chosen γ = 10−1 but unlike the
author only futures contracts have been used mainly for two reasons: (i) futures are

eThe authors thanks Bruno Dupire for bringing the existence of this index to our attention.

1850037-19

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 2
01

8.
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
U

N
D

A
C

A
O

 G
E

T
U

L
IO

 V
A

R
G

A
S 

on
 1

2/
16

/1
9.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



September 25, 2018 9:38 WSPC/S0219-0249 104-IJTAF SPI-J071
1850037

A. De Genaro & M. Avellaneda

much more liquid than options, so including the later we could add more noise to
the problem, (ii) our main goal in this paper is pricing options so we kept options
to be used only for this purpose.

7.1. Implied probabilities — USA

Interest rate futures, specifically the 30-Day Fed fund futures contracts traded at
CME Group, are not only useful tools for speculators and hedgers. These contracts
offer valuable information that can be used to estimate the market’s view of the
probability of a rate change by the Federal Reserve.

Federal funds futures are one-month interest rate futures contracts, which are
generally the difference between the average market rate during the delivery month
and the futures rate at the time the contract was bought, multiplied by the notional
amount, and they are settled in cash. Federal funds futures contracts are traded at
CME Group and are quoted in terms of a price, which is calculated as 100 minus
the realized average Fed funds rate for the delivery month.

Here, we show how to use our model to extract future decisions of the FOMC. In
order to accomplish that, we consider quotes for 30-Day Fed fund futures ranging
from 9 September 2017 to 12 December 2017. In early April, the general market
expectation was for the Fed to start tightening the interest rate by June at the
latest, given signs of continuing improvement in the economy.

The market’s assessment of the future change by the Federal Reserve changed
over the days preceding the meeting, but the most likely outcomes were stable and
given by A = {0 bps, +25 bps, +50 bps}. Therefore, using market prices and A we
are able to solve the regularizated problem (7.1) and extract the implied risk-neutral
probabilities, Q(θτj = ai) such that ai ∈ A:

The FOMC had a meeting scheduled on 13 December 2017, when they chose to
increase the target range by 25 bps. We can see from Fig. 4 that market expecta-
tions about the outcome changed over the days before the meeting, but the market
converged towards the FOMC decision.

7.2. Implied probabilities — Brazil

We also choose to extract the implied probabilities for future decisions of the mon-
etary authority in Brazil for two reasons. First, there is a very liquid market for
overnight interest rate futures in Brazil. Second, Brazil has adopted a inflation tar-
geting regime since 1999 with scheduled meetings to define the target rate, and
interest rate derivatives are used by market participants to bet on future monetary
decisions.

The main interest rate derivatives in Brazil are DI futures, which are quoted in
terms of rates and are traded in basis-points, but positions are recorded and tracked
by the present value of the contract, called PU. Therefore each possible target rate
will also have a market-based probability associated with it. The overnight interest
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Fig. 4. Implied probabilities extracted from Fed Fund Futures for the Federal Reserve meeting on
13 December 2017. Tikhonov regularization method with γ = 10−1. Numbers in left axis express
a 25 bps interest rate hike (orange line) or Fed’s interest rate maintenance (blue line). Right axis:
50 bps interest rate hike (gray line).

rate futures, DI futures,f traded at B3, is one of the most liquid short-term interest
rate contracts in emerging markets, and the average volume of 2.3 million contracts
traded daily is significant even for developed markets.

The notional value of the contract is BRL 100,000 (approximately USD 30,675
as of 3 February 2018). For a given day t the present value is obtained by discounting
the notional value of the contract by the expected overnight interest rate from t up
to the day prior to expiration, T . Therefore, at time t we can calculate the present
valueg (PU) of a DI-futures with expiration date of T as

PUt = E(e−
R

T
t

rsds | Ft) × 100,000. (7.3)

From Eq. (7.3) we verify that the DI futures is very similar to a zero-coupon
bond, except that it pays margin adjustments every day. The fact that the contract
resembles a zero-coupon bond allows us to use the results derived at earlier sec-
tions to extract the implied market transition for (θt)t≥0 and use them for pricing
options. Moreover, the number of possible target rate alternatives that are likely

fTicker: DI1.
gIn practice, the Brazilian convention for interest rate is exponential compound 252 business day
(BD) and margin adjustment are calculated by the formula: PUt = 100,000/(1 + rt)BD/252.
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Fig. 5. Implied probabilities extracted from DI Futures for the COPOM meeting on 6 September
2017. Tikhonov regularization method with γ = 10−1. Numbers in left axis refer to implied
probabilities of 75 bps interest rate cut (gray line) or 100 bps interest rate cut (red line). Numbers
in right axis represent implied probabilities of a 125 bps interest rate cut (blue line).

to be considered at any particular COPOM meeting is usually small, usually three
or fewer. We assume that A = {−125 bps,−100 bps,−75 bps} and we calibrate the
model for every day from August 2017 to September 2017 to extract the market
probabilities of the two next COPOM decisions by solving the optimization problem
in Eq. (7.1).

Figure 5 shows implied probabilities of future outcomes for the monetary author-
ity in Brazil extracted from DI1 futures prices on different dates. The shape of
any given curve provides an indicator of market expectations on a particular day
of future movements of interest rates. Day-to-day changes in market sentiment
are reflected by shifts in the curves. The COPOM had a meeting scheduled for 6
September 2017, when the monetary authority chose to decrease the target rate by
100bps.

Even though the results seem to be a valuable tool for extracting market expec-
tations, this is not the paper’s goal, we only resort to this exercise here to recover
market expectations, implied by liquid instruments, for pricing less liquid instru-
ments, such as options, in a consistent manner. For those interested in understanding
how market implied expectations are linked to future changes in the interest rate,
the paper by Nkwoma (2017) presents new evidence on the asymmetric effect of
anticipated and unanticipated monetary policy changes.
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8. Real Market Price Options

In this section, we present the results of our methodology applied to pricing interest
rate options. The results are applied to two different types of short-term interest
rate options: IDI options traded in Brazil and 30-Day Fed funds options traded at
CME Group. For both sets of options we compare traded prices with the model
derived in this paper with two competing models and show which one has a smaller
pricing error. The competing models are Black’s (1976) model and Merton’s (1976)
model.

In the following tables, we apply the model presented in Proposition 6.5 (Black
DTJ) when the market expectation regarding future monetary policy decisions
is extracted via the regularization methodology described in Sec. 7. The results
obtained are compared with the prices of the IDI put options traded at B3 for a
selected number of days. The results of the proposed model are also compared with
Black’s traditional model, widely used by practitioners in Brazil, as well as Merton’s
(1976) model that includes random jumps.

We present in Table 1 the results of the models, as well as market prices of dif-
ferent put options with maturity on 2 October 2017. For the selected days there was
only one COPOM meeting before the option’s maturity, scheduled for 6 September
2017. The volatility used in all the models was the same and estimated from the
historical standard-deviation of the spot IDI index for an one-year window. Fur-
thermore, for Merton’s (1976) model it was assumed that the expected number of
jumps was 8 per year (the total number of COPOM meetings expected in a year)
while the jump amplitude was set at 10%.

For each model, the option price is presented, and since we do not have a traded
price equal to zero we also present the percentage error. For all strikes the model
that incorporates deterministic timed jumps (Black DTJ) exhibits a lower pricing
error than any other model tested. It is interesting to observe that, as expected the
inclusion of random jumps as in Merton’s (1976) model reduces the pricing error

Table 1. IDI options — one scheduled meeting before the option’s maturity on 2 October 2017.

Day Strike Prices in BRL Percentage error

Trade Black Black Merton Black Black Merton
(76) DTJ (76) (76) DTJ (76)

27 July 17 243.600 3.13 0.78 3.36 0.80 75.0% −7.3% 74.6%
27 July 17 243.650 36.67 28.98 35.84 29.43 21.0% 2.2% 19.7%
27 July 17 243.700 81.70 77.97 84.36 79.18 4.6% −3.3% 3.1%
28 July 17 243.600 3.22 0.89 3.31 0.90 72.4% −3.0% 72.0%
28 July 17 243.650 37.34 30.19 35.84 30.65 19.1% 4.0% 17.9%
28 July 17 243.700 82.72 79.25 84.39 80.46 4.2% −2.0% 2.7%
4 August 17 243.600 1.22 0.01 1.23 0.01 99.0% −0.8% 99.0%
4 August 17 243.650 35.05 29.86 36.58 30.26 14.8% −4.4% 13.7%

Mean percentange
error (MPE) 38.8% −1.8% 37.8%
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when compared to Black’s (1976) model in which the interest rate is a continuous
process.

To assess the robustness of the results, we repeated the analysis using a dif-
ferent set of put options, the difference here comes from the fact that there were
two COPOM meetings scheduled before the option’s maturity. These options had
expiration on 2 January 2018 and the COPOM meetings were scheduled to be held
on 6 September 2017 and 25 October 2017. As can be seen in Table 2, the model
proposed in this paper, which incorporates scheduled meetings, outperformed all
other models tested for every day of our analysis.

Finally, we evaluated the quality of the model proposed in this paper for pricing
30-Day Fed funds options traded at CME and as in the case of IDI options, we
made a comparison among models, we assessed the pricing errors of three different
models: the model presented at Proposition 6.5 (Black DTJ), Black’s (1976) model
and Merton’s (1976) model. The volatility used in all the models was the same
and estimated from the historical standard-deviation of the effective federal funds
rate (EFFR) for an one-year window. In addition, for Merton’s (1976) model it
was assumed that the expected number of jumps was also 8 per year (the total
number of FOMC meetings expected in a year) while the jump amplitude was set
at 5%. Unlike the IDI options, the 30-Day Fed funds options were very illiquid so
we summarized our results in Table 3.

We see from Table 3 that the model developed in this paper, which includes
deterministic-timed jumps (Black DTJ) also exhibited a lower pricing error than
any other model tested. Black’s model with deterministic timed jumps outperformed
all other models, the performance was superior both for calls and puts and also for
the case where we had more that one FOMC meeting before the options maturity.

Table 2. IDI options — two scheduled meetings before the option’s maturity on 2 January
2018.

Day Strike Prices in BRL Percentage error

Trade Black Black Merton Black Black Merton
(76) DTJ (76) (76) DTJ (76)

8 September 17 247.900 20.35 0.18 27.49 0.18 99.1% −35.1% 99.1%
8 September 17 248.000 90.89 73.28 96.03 74.95 19.4% −5.6% 17.5%
8 September 17 248.100 179.12 171.05 175.87 174.95 4.5% 1.8% 2.3%
11 September 17 247.900 21.48 0.14 27.50 0.15 99.3% −28.0% 99.3%
11 September 17 248.000 88.48 72.42 96.06 74.05 18.1% −8.6% 16.3%
11 September 17 248.100 176.44 170.22 175.92 174.05 3.5% 0.3% 1.4%
18 September 17 247.900 27.03 2.85 26.75 2.91 89.4% 1.1% 89.2%
18 September 17 248.000 105.47 95.39 104.97 97.37 9.6% 0.5% 7.7%
18 September 17 248.100 197.83 193.35 201.07 197.37 2.3% −1.6% 0.2%
19 September 17 247.900 24.81 0.73 23.61 0.74 97.1% 4.8% 97.0%
19 September 17 248.000 97.97 87.31 95.54 89.10 10.9% 2.5% 9.0%
19 September 17 248.100 189.34 185.30 189.24 189.10 2.1% 0.1% 0.1%

Mean percentange
error (MPE) 29.1% −0.1% 27.6%
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These findings corroborate our assumptions that the inclusion of scheduled
events improves the pricing of overnight interest rate derivatives. Finally, we observe
that our methodology is flexible enough for modeling equally well out-of-the money
and in-the money options without any assumption over the implied volatility shape,
i.e. smile or smirk. An important consequence of this framework is the fact that
by construction options and ZCB will embed the same probabilities regarding the
future monetary policy decisions.

A final remark on our framework concerns its comparison to Piazzesi (2005),
which also models future monetary outcomes. While option prices in her frame-
work are obtained by using numerical methods to solve a time dependent ordinary
differential equation ours only incur in a couple of Black and Scholes-like valuations.

9. Conclusion

Many countries such as Brazil, England and the USA announce their monetary
policy decisions at regularly scheduled meetings, and some have adopted inflation
targeting as a strict rule for conducting their monetary policy. Under an infla-
tion targeting framework, the central bank strives to meet a publicly announced
inflation target using the monetary policy instruments at its disposal. Transparency
and accountability of monetary policy are two important features of this framework.
According to common practice among central banks that have adopted the inflation
targeting regime, the target interest rate is set in their decision-making meetings
according to a pre-announced schedule. In turn, market participants have care-
fully tracked all scheduled meetings where the target interest rate is set and traded
derivatives to bet on possible outcomes.

Standard interest rate models are not suitable for handling deterministic timed
events, and some level of mispricing is present when applying such models to pricing
interest rate derivatives. Based on that, we developed in this paper a stochastic
interest rate model able to endogenously incorporate monetary announcements.
The model incorporates future monetary decisions and therefore allows pricing of
both zero-coupon bonds and options in a consistent manner.

We apply our model for pricing options traded in Brazil and the USA. Brazil is a
valid country to apply our model due to its adoption in 1999 of an inflation targeting
regime, and also because it hosts a very liquid overnight interest rate derivatives
market, which is used by participants to bet on future monetary decisions. We
also apply our model to pricing 30-day Fed funds options traded at CME. When
compared to market prices, the model with deterministic timed jumps outperformed
all other models, the performance was superior both for calls and puts and also for
the case where we had more that one scheduled meeting before the options maturity.
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