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Abstract

Purpose – The purpose of this paper is to present an arbitrarily accurate approximation for the value
of European options written on a Black-Scholes stock paying a discrete dividend.

Design/methodology/approach – The proposed method is a computational method for the
analytical solution of the problem.

Findings – It was found that the proposed method is computationally faster than any other exact
computational available method, including Monte-Carlo simulations.

Research limitations/implications – The method is applied for a single dividend payment, but
can be extended for several payments. The exact amount of the dividend must be known ex-ante, as
well as the precise date of payment.

Practical implications – The paper provides the most efficient way to compute with absolute
precision the value of European options on dividend-paying assets, under the Black-Scholes
assumption.

Originality/value – The computing time in the approach is several orders of magnitude faster than
with traditional Monte Carlo methods, for the same desired accuracy.

Keywords Europe, Dividends, Assets, Accuracy

Paper type Research paper

1. Introduction
In the seminal paper of Black and Scholes (1973), the problem of valuing a European
option was solved in closed form. Among other things, their result assumes that the
stochastic process associated to the underlying asset is a geometric Brownian motion,
not allowing for the payment of discrete dividends. Yet the majority of stocks on which
options trade do pay dividends.

Merton (1973) was the first to relax the no-dividend assumption, allowing for a
deterministic dividend yield. In this case, he showed that European options can be
priced in the context of a Black-Scholes economy, with either a continuous dividend
yield or a discrete dividend proportional to the stock price. However, when the
dividend process is discrete and does not depend on the stock level, the simplicity of
the Black-Scholes model breaks down.
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Let St denote the value of the underlying asset at time t, and let T be the maturity time
of the option. When the risky asset pays a dividend D at time t,T, a jump of size D in
the value process happens at that point in time. The stock price process is discontinuous
at t ¼ t and is no more a geometric Brownian motion in the time interval [0,T ].

The standard approximation procedure for valuing European options written on
such a risky asset, first informally suggested by Black (1975), considers a
Black-Scholes formula, where the initial price of the under-lying stock S0 is replaced
by its actual value less the present value (PV) of the dividends (Div):

S0 ! S
*

0 ¼ S0 2 PVðDivÞ:

This adjustment is made to evaluate the option at any point in time before t. After the
payment of dividends, there is no need for further adjustments. In this approximation,
the input in the Black-Scholes formula is the value of the (continuous) stochastic process:

S
*

t ¼
St 2 De2rðt2tÞ; t , t

St; t $ t

(

where r is the risk-free rate.
For t , t, the discontinuous stock price process St can thus be seen as the sum of

two components (St ¼ S
*

t þ De2rðt2tÞ). One riskless component, De2rðt2tÞ,
corresponding to the known dividends during the life of the option, and a
continuous risky component S

*

t . At any given time before t, the riskless component is
the present value of the dividend dis-counted at the present at the risk-free rate. For
any time after t until the time the option matures, the dividend will have been paid and
the riskless component will no longer exist. We thus have ST ¼ S

*

T and, as pointed out
by Roll (1977), the usual Black-Scholes formula is correct to evaluate the option only if

S
*

t follows a geometric Brownian motion. In that case, we would use in the

Black-Scholes formula S
*

0 for the initial value, together with the volatility of the process

S
*

t , followed by the risky component of the underlying asset.
If we assume that S

*

t follows a geometric Brownian motion, a simple application of
Itô Lemma shows that the original stock price process St does not follow a geometric
Brownian motion in the time interval [0,t]. On the other hand, under the Black-Scholes
assumption that St follows a geometric Brownian motion in [0,t], the risky component
S
*

t follows a continuous process that is not a geometric Brownian motion in [0,t].
Therefore, the standard procedure described above must be seen as an approximation
to the true value of such calls under the Black-Scholes assumption. As argued by Bos
and Vandermark (2002), this assumption is typically underlying the intuition of
traders, but the approximation is sometimes bad. In fact, as noticed in the early papers
about option pricing (Cox and Ross, 1976; Merton, 1976a, b), the correct specification of
the stochastic process followed by the value of the underlying stock is of prime
importance in option valuation.

The deficiency of this standard procedure is reported in Beneder and Vorst (2001).
Using Monte Carlo simulation methods, these authors calculate the values of call
options under the Black-Scholes assumption, and compare them with the values
obtained with the approach just described. Reported errors are up to 9.4 per cent. They
also find that the standard procedure above usually undervalues the options. For these
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reasons, Beneder and Vorst (2001) propose a different approximation, trying to
improve the standard procedure by adjusting the volatility of the underlying asset.
This approach consists in modifying the variance of the returns by a weighted average
of an adjusted and an unadjusted variance, where the weighting depends on the time t
of the dividend payment. Performing much better than the former approximation, this
method still does not allow the control of the errors committed for the given parameters
of the economy. Analogously, Frishling (2002) warns on the mis-pricing risk due to the
use of an incorrect underlying stochastic process. This discussion is followed by a
series of recent papers suggesting different approximations that better match
numerical results (Bos and Vandermark, 2002; Bos et al., 2003). More recently, Haug
et al. (2003) discuss this problem. However, as these authors claim, “[i]n the case of
European options, the above techniques are ad hoc, but the job gets done (in most
cases) when the corrections are properly carried out”.

The development of these approximations enhance two important aspects. First,
they are not exact, and it is not possible to control the error with respect to the correct
value of the option. Second, there are numerical procedures to estimate the value of
these options, as for ex-ample, Monte-Carlo simulation methods. However, this method
is time consuming and provides a convergence of statistical nature.

The purpose of this paper is to derive a closed form for the exact value of European
options on a stock paying a discrete dividend, in the context of a Black-Scholes
economy. We obtain an exact result and we need not to rely on ad hoc assumptions.

This paper is organized as follows. In Section 2, an integral representation for the
value of European options written on an asset paying a discrete dividend is obtained,
and the convexity properties of the solutions of the Black-Scholes equation are derived.
In section 3, we construct functional upper and lower bounds for the integral
representation of the value of an option. These bounds follow from a convexity
property of the solutions of the Black-Scholes equation. Theorem 3.4 is the main result
of this paper and gives the algorithmic procedure to determine the price of European
options on a stock paying a discrete dividend. In section 4, numerical examples are
analyzed and we discuss the advantages of the proposed method. In section 5, we
summarize the main conclusions of the paper.

2. Valuation of European options on a stock paying a discrete dividend
In this section, following a standard procedure to derive the Black-Scholes formula
(Wilmott, 2000), we derive an integral representation for the value of a European option
written on an asset paying a known discrete dividend.

We consider a European call option with maturity time T and strike price K. This
call option is written on an underlying asset with value St , with stochastic differential
equation:

dSt ¼ mStdt þ sStdW t

where m and s are the drift and volatility of the underlying asset. The quantity Wt is a
continuous and normally distributed stochastic process with mean zero and variance t.
Under these conditions, the underlying asset with value St follows a geometric
Brownian motion. We also assume a risk-free asset with constant rate of return r.

In the context of the Black-Scholes economy, the value V of an option is dependent of
the time t and of the price of the underlying asset S. Under the absence of arbitrage
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opportunities (Wilmott, 2000; Björk, 1998), it follows that V (S, t) obeys the Black-Scholes
equation:

›V

›t
þ

1

2
s 2S 2 ›

2V

›S 2
þ rS

›V

›S
2 rV ¼ 0: ð2:1Þ

The Black-Scholes equation is a quasi-linear parabolic partial differential equation,
with S $ 0, and t $ 0. To determine the solutions of the Black-Scholes equation, we
introduce the new variables:

u ¼ T 2 t

x ¼ log S þ r 2 s 2

2

� �
T 2 tð Þ

8<
:

together with the new function wðx; uÞ ¼ erðT2tÞV ðS; tÞ. In the new coordinates (2.2),
the Black-Scholes equation (2.1) becomes the diffusion equation:

›w

›u
¼

1

2
s 2 ›

2w

›x 2
ð2:2Þ

where x [ R and u $ 0, by (2.2), we have wðx; 0Þ ¼ V(S,T) and wðx;TÞ ¼ er T

V ðS; 0Þ.
Therefore, by (2.2), the forward solution in the time u of the diffusion equation relates
with the backward solution in the time t of the Black-Scholes equation (2.1). The
Black-Scholes problem for the price of a call option is to determine the option value at
time t ¼ 0 whose value at maturity time T is:

V ðS;TÞ ¼ max 0; S 2 Kf g ð2:3Þ

Therefore, due to the change of coordinates (2.2), the call option solution of the
Black-Scholes equation (2.1) is equivalent to an initial value problem for the diffusion
equation.

Suppose now an initial data problem for the diffusion equation (2.2),
wðx; u ¼ 0Þ ¼ f ðxÞ. Under these conditions, the general solution of (2.2) is (Folland, 1995):

wðx; uÞ ¼
1

s
ffiffiffiffiffiffiffiffi
2pu

p

Z 1

21

f ð yÞ exp 2
ðx 2 yÞ2

2s2u

� �
dy ð2:4Þ

and the solution of the Black-Scholes equation for a call option is:

V ðS; 0Þ2 e2rTwðx;TÞ ¼
e2rT

s
ffiffiffiffiffiffiffiffiffiffi
2pT

p

Z 1

21

V ðey;TÞ exp 2
ðx 2 yÞ2

2s 2T

� �
dy: ð2:5Þ

This integral can be easily calculated to obtain the usual Black-Scholes formula (Black
and Scholes, 1973; Wilmott, 2000).

For a dividend distribution at some time t [ ð0;TÞ, the Black-Scholes formula is no
longer true, since, during the life time of the option, the value of the underlying asset
does not follow a geometric Brownian motion. However, if we take the time intervals,
I 1 ¼ 0; t

� �
and I 2 ¼ t;T

� �
, the value of the underlying asset follows a geometric

Brownian motion in each interval I 1 and I 2, and, at time t ¼ t, it has a jump equal to
the dividend D.
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Before considering this case, we proceed with some properties of the solutions (2.4)
and (2.5) of the diffusion and of the Black-Scholes equations.

Definition 2.1
A real valued function f (x), with x [ R, is convex if, for every x1; x2 [ R:

f
x1 þ x2

2

� 	
#

1

2
f x1ð Þ þ f x2ð Þð Þ:

A simple property of convex functions is that, if the real-valued functions f and g are
both convex, and g is increasing, then f(g(x)) is also convex.

Proposition 2.2
Let f(x) the initial data function of a well-posed diffusion equation problem, and
suppose that f(x) is non-negative and convex. Then, for fixed u, the solution wðx; uÞ of
the diffusion equation is also convex. Moreover, if f(x) is an increasing function, then,
for fixed u;wðx; uÞ is also increasing.

Proof. Suppose that the solution (2.4) of the diffusion equation (2.2) is well defined
(Folland, 1995). By (2.4), with z ¼ y 2 x, we have:

wðx; uÞ ¼
1

s
ffiffiffiffiffiffiffiffi
2pu

p

Z 1

21

f ðz þ xÞ exp 2
z 2

2s 2u

� 	
dz:

As, by hypothesis, f(x) is convex, then, for every z [ R:

f
x1 þ zð Þ þ x2 þ zð Þ

2

� �
¼ f z þ

x1 þ x2

2

� 	
#

1

2
f ðz þ x1Þ þ f ðz þ x2Þ

� �
and, as f(x) is non-negative:

w x1þx2

2 ; s

 �

¼ 1
s
ffiffiffiffiffiffi
2pu

p
R1

21
f z þ x1þx2

2


 �
exp 2 z 2

2s 2u

� �
dz

# 1
2 w x1; u


 �
þ w x2; u


 �� �
and so wðx; uÞ is also convex. Assuming now that f(x) is increasing, we have that f(x2)
$ f(x1), whenever x2 . x1. Then, for every z [ R, we have, f ðz þ x2Þ $ ðz þ x1Þ, and,
by (2.4), the last assertion of the proposition follows. A

As (2.3) is a convex function in S, Proposition 2.2 implies that the backward solution
(2.5) of the Black-Scholes equation (2.1) is also a convex function.

Suppose now that a dividend on the underlying asset is distributed at time t ¼ t.
We denote this dividend by D. According to the classical solution of the Black-Scholes
equation (Wilmott, 2000), the price of the option just after the distribution of dividends
at time t ¼ t is:

V ðsþ; tÞ ¼ SþN d þ s
ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p� �
2 Ke2rðT2tÞN ðd Þ ð2:6Þ
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where:

d ¼
ln Sþ 2 ln K þ ðr 2 1

2 s
2ÞðT 2 tÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p :

and Sþ denotes the value of the underlying asset just after the dividend distribution.
The function N( · ) is the cumulative distribution function for the normal distribution
with mean zero and unit variance. By Proposition 2.2, the function V ðSþ; tÞ is convex.
Note that the solution (2.6) is given by V ðSþ; tÞ ¼ e ½rðT2tÞwðx;T 2 tÞ, and is directly
calculated from (2.5) and (2.3).

The approach taken here to value an option is equivalent (see, among others, Cox and
Ross, 1976; Harrison and Kreps, 1979) to write this value at any point in time as the
expected discounted payoff of the option at maturity T, under the so-called risk-neutral
probability measure. Hence, knowing beforehand the amount to be distributed as
dividend, the value of the option is not supposed to jump at t. In other words, the
payment of known dividends D at a known point in time t does not affect the
expectations at time t about the final payoff of the option at maturity T, and the value of
the option is continuous at t[1] (Wilmott, 2000, pp. 129-31). Going backward in time, the
value of the underlying asset jumps from Sþ to S2 ¼ Sþ þ D, where S2 is the value of
the underlying asset just before the dividend distribution. As V ðSþ; tÞ þ V ðS2; tÞ, by
(2.6), the price of the option just before the distribution of dividends at time t ¼ t is:

V ðS2; tÞ ¼
ðS2 2 DÞN �d þ s

ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p
 �
2 Ke2rðT2tÞN ð�dÞ if S2 . D

0 if S2 # D

8<
:

9=
; ð2:7Þ

where:

�d ¼
ln S2 2 Dð Þ2 ln K þ r 2 1

2 s
2


 �
T 2 tð Þ

s
ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p : ð2:8Þ

In Figure 1, we plot V ðSþ; tÞ, V ðS2; tÞ and V (S, T) as a function of S. The functions V
(S þ ,t), V (S 2 ,t) and V (S, T) are convex.

Figure 1.
Option values V ðSþ; tÞ,
V ðS2; tÞ and V ðS;TÞ as a
function of the value S of
the underlying asset
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To calculate the value of a call option as a function of the actual price (t ¼ 0) of the
underlying asset, we must introduce the change of coordinates (2.2) into (2.7) and
integrate as in (2.5). By (2.5) and (2.7), it follows that the time-zero value of a European
option written on an asset paying dividend D at time t ¼ t is given by:

V ðS; 0Þ ¼ e2ctwðx; tÞ ¼
e2rt

s
ffiffiffiffiffiffiffiffi
2pt

p

Z 1

21

V S2ð yÞ; t
� �

exp 2
x 2 yð Þ2

2s 2t

� �
dy ð2:9Þ

which has no simple representation in terms of tabulated functions. By Proposition 2.2,
V (S, 0) is also convex.

3. Accurate bounds for V (S, 0)
As it is difficult to determine a close form for the integral representation of the option’s
value (2.9) in terms of tabulated functions, to estimate the value V (S, 0), we use the
convexity property of V ðS2; tÞ and its asymptotic behavior as S2 !1.

Lemma 3.1
If K . 0, then, in the limit S2 !1;V ðS2; tÞ is asymptotic to the line V ¼ (S2 2 D 2
Ke2rðT2tÞ, and V ðS2; tÞ $ ðS2 2 DÞ2 Ke2rðT2tÞ.

Proof. In the limit S2 !1; �d !1 and N ð�dÞ! 1. Hence, by (2.7), V ðS2; tÞ is
asymptotic to the line V 1 ¼ ðs2 2 d Þ2 Ke2rðT2tÞ. To prove the second part of the
lemma, first note that, if V 1 ¼ ðs2 2 DÞ2 Ke2rðT2tÞ # 0, then S2 # D þ Ke2rðT2tÞ.
As V ðS2; tÞ is non-negative, if S2 # D þ Ke2rðT2tÞ, then V ðS2; tÞ $ V 1.

Suppose now that S2D þ Ke2rðT2tÞ. By hypothesis, we assume that there exists
some S2 ¼ �S such that, V ð �S 2 DÞ2 Ke2rðT2tÞ and V ð �S; tÞ . 0. By (2.7) and (2.8), we
then have:

Ke2rðT2tÞ ¼
N �d �S


 �
þ s

ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p� �
2 1

N �dð �SÞ
� �

2 1
ð �S 2 DÞ:

As ðS2 2 DÞ . Ke2rðT2tÞ, from the equality above, we obtain:

N �d �S

 �

þ s
ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p� �
2 1

N �d �S

 �� �

2 1
�S 2 D


 �
¼ Ke2rðT2tÞ , S2 2 DÞ:

Hence:

N �dð �SÞ þ s
ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

ph i
, N �dð �SÞ

� �
:

which contradicts the fact that N( · ) is a monotonically increasing function of the
argument. Therefore, the function V ðS2; tÞ and the line V 1 ¼ ðS2 2 DÞ2 Ke2rðT2tÞ

do not intersect for finite �S. As V ðS2; tÞ is a continuous function of S2, then
V ðS2; tÞ $ V 1 in all the range of S2, and the lemma is proved. A

To estimate the solution (2.9) of the Black-Scholes equation, we use Proposition 2.2
and Lemma 3.1 to construct integrable upper and lower bound functions of V ðS2; tÞ.
This constructions proceeds as follows.

Let us choose a fixed number S2 ¼ S* . D, and divide the interval D; S*
� �

into
M $ 1 smaller subintervals. The length of the subintervals is DS ¼ S* 2 D


 �
=M ,

and their extreme points are denoted by:
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Si ¼ D þ iDS; i ¼ 0; . . . ;M :

As the function V ðS2; tÞ is convex, in each subinterval, the function V ðS2; tÞ is
bounded from above by the chord that connects the points ðSi;V ðSi; tÞÞ and
ðSiþ1;V ðSiþ1; tÞÞ. We define the constants:

ai ¼
M

S* 2 D
V ðSi; tÞ2 V ðSi21; tÞ
� �

i ¼ 1; . . . ;M ;

whereby (2.7), V ðS0; tÞ ¼ 0. Therefore, in each interval ½Si21; Si�, the function V ðS2; tÞ
is bounded from above by the function f iðS2Þ ¼ aiðS2 2 Si21Þ þ V ðSi21; tÞ.

Let us define the characteristic function of a set I as, xI ðxÞ ¼ 1, if x [ I , and
xI ðxÞ ¼ 0, otherwise. Then, the function V ðS2; tÞ in the interval D; S*

� �
is approached

from above by the piecewise linear function:

Vþ
1 S2; t

 �

¼
XM

i¼1

ai S2 2 Si21ð Þ þ V ðSi21;tÞ
� �

x Si21;Si½ �ðS2Þ ð3:1Þ

To extend the bound of V ðS2; tÞ to S_ . S*, we introduce the function:

Vþ
2 S2; t

 �

¼ S2 2 S*

 �

þ V S*; t

 �� �

x S*;1Þ½ ðS2Þ ð3:2Þ

By Proposition 2.2 and Lemma 3.1, for S2 $ S*;Vþ
2 ðS2; tÞ is the chord connecting the

point S*;V ðS*; tÞ

 �

to the point at infinity. Therefore, we have proved the following.

Lemma 3.2
The function V ðS2; tÞ has the upper bound:

V ðS2; tÞ # Vþ
1 ðS2; tÞ þ Vþ

2 ðS2; tÞ; if S2 . D

where Vþ
1 and Vþ

2 are given by (3.1) and (3.2), respectively, and the function
Vþ

1 þ Vþ
2


 �
is piecewise linear and non-negative. If S2 # D;V ðS2; tÞ ¼ 0.

The construction of a lower bound for (2.7) follows the same line of reasoning.
In each subinterval Si21;Si

� �
, D; S*

� �
, we can construct a linear function that

bounds from below the function V ðS2; tÞ. Owing to the convexity of V ðS2; tÞ, we
construct the lower bound through the derivative of V ðS2; tÞ at the middle point of
each interval Si21; Si

� �
. We then have:

V2
1 ðS2; tÞ ¼

XM

i¼1

V 0 Siþ1
2
t

� �
S2 2 Siþ1

2

� �
þ V Siþ1

2
; t

� �h i
x Si21;Si½ � S2ð Þ ð3:3Þ

where:

V 0 S2; t

 �

¼
e21

2
�dþs

ffiffiffiffiffiffiffi
T2t

p
 �2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

pp 2
Ke2rðT2tÞe21

2 d 22

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t S2 2 Dð Þ

pq þ N �d þ s
ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p� �

and �d is given by (2.8).
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To extend the lower bound of V ðS2; tÞ to S2 . S*, we use Lemma 3.1 to introduce
the function:

V2
2 ðS2; tÞ ¼ S2 2 Dð Þ2 Ke2r T2tð Þ

� �
x s*;1
� �

ðS2Þ ð3:4Þ

By Lemma 3.1, V2
2 ðS2; tÞ bounds from below V ðS2; tÞ. Therefore, we have the

following.

Lemma 3.3
The function V ðS2; tÞ has the lower bound:

V ðS2; tÞ $ V2
1 ðS2; tÞ þ V2

2 ðS2; tÞ; if S2 . D

where V2
1 and V2

2 are given by (3.3) and (3.4), respectively, and the function
V2

1 þ V2
2


 �
is piecewise linear and non-negative. If S2 # D;V ðS2; tÞ ¼ 0.

Finally, we can state our main result.

Theorem 3.4
We consider the Black-Scholes equation (2.1) together with the terminal condition (2.3).
We assume that K . 0 and a dividend D . 0 is paid at the time t with 0 , t , T . Let
S 2 S* . D be a fixed constant and let M $ 1 be an integer. Then, the solution of the
Black-Scholes equation with terminal condition (2.3) has the following upper and lower
bounds:

V ðS; 0Þ # Vþ
S*;M ðS; 0Þ ¼

XM

i¼1

aiAiS þ e2rt V ðSi21;tÞ2 aiSi21

� �
Bi

� 

þSN ðd*Þ þ e2rt V ðS*; tÞ2 S*

� �
N ðd* 2 s

ffiffiffi
t

p
Þ

and

V ðS; 0Þ $ V2
S*;M ðS; 0Þ ¼ S

XM

i¼1

V 0 Siþ1
2
; t

� �
Ai

þe2rt
XM

i¼1

V Siþ1
2
; t

� �
2 V 0 Siþ1

2
; t

� �
Siþ1

2

h i
Bi

þSN ðd*Þ2 e2rt D þ Ke2rðT2t

 �

N d* 2 s
ffiffiffi
t

p
 �
where:

Si ¼ D þ
S* 2 D

M
i

di ¼
log S 2 log Si þ r þ 1

2 s
2


 �
t

s
ffiffiffi
t

p
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d ¼
logðS 2 DÞ2 log K þ r þ 1

2 s
2


 �
T 2 tð Þ

s
ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p

d* ¼
log S 2 log S* þ r þ 1

2 s
2


 �
t

s
ffiffiffi
t

p

V ðS; tÞ ¼ ðS 2 DÞN ðd Þ2 Ke2rðT2tÞN d 2 s
ffiffiffiffiffiffiffiffiffiffiffiffi
T 2 t

p� �

V 0ðS; tÞ ¼ N ðd Þ þ
e21

2 d 2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðT 2 tÞ

p 2
Ke2rðT2tÞe21

2 d2s
ffiffiffiffiffiffiffi
T2t

p
 �2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðT 2 tÞ

p
S 2 D

ai ¼
M

S* 2 D
V ðSi; tÞ2 V ðSi21; tÞ
� �

Ai ¼ N di21ð Þ2 N dið Þ

Bi ¼ N di21 2 s
ffiffiffi
t

p
 �
2 N di 2 s

ffiffiffi
t

p
 �
and N( · ) is the cumulative distribution function for the normal distribution with mean
zero and unit variance.

Proof. By Lemmata (3.2) and (3.3):

V2
1 ðS2; tÞ þ V2

2 ðS2; tÞ # V ðS2; tÞ # Vþ
1 ðS2; tÞ þ Vþ

2 ðS2; tÞ; if S2 . D:

Multiplying this inequality by the factors as in the integral (2.9), and integrating, we
obtain the estimates of the theorem. A

Note that, for S* . D fixed, lim M!1V2
S*;M ðS; 0Þ – lim M!1Vþ

S*;M ðS; 0Þ. However,
if S* is large enough, both limits can be made arbitrarily close. Technically, this is due
to the way the exponential term in (2.5) contributes to the integral.

4. Calculating the price of a call option on a stock paying a discrete dividend
Theorem 3.4 is the necessary tool to determine the price of a call option when the
underlying asset pays a discrete known dividend before maturity time T. In fact,
Theorem 3.4 asserts that we can always find upper and a lower bound functions for V
(S, 0), and the bounding functions approach each other as we increase M and S* (see
Figure 2 and Table I).

To determine the price of the option, we first choose fixed values for the
approximation parameters S* and M. If Vþ

S*;M ðS; 0Þ and V2
S*;M ðS; 0Þ differ too much

within some fixed precision, we then increase S* and M.
To analyze the convergence of the functional bounds V þ and V 2 to the true price

of a call option, we take, as an example, the parameters: m ¼ 0.01 (drift), s ¼ 0.2
(volatility), r ¼ 0.03 (interest rate), K ¼ 100 (strike price), D ¼ 5 (dividend), T ¼ 1
(expiration time) and t ¼ 0.5 (time of dividend paying). In Figure 2, we show
Vþ

S*;M ðS; 0Þ and V2
S*;M ðS; 0Þ, for several values of S* and M, and calculated from
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Theorem 3.4. Increasing M and S*, the upper and lower bounds Vþ
S*;M ðS; 0Þ and

V2
S*;M ðS; 0Þ approach each other, increasing the accuracy to which the functionals

bounds approach the option price. To quantify this approximation to the value of the
option, we define the interval error as:

Figure 2.
Bounds Vþ

S* ;M ðS; 0Þ and
V2

S* ;M ðS; 0Þ for V (S, 0),
calculated from Theorem
3.4, for several values of

S* and M

S S* M V2
S* ;M ðS; 0Þ V ðS; 0Þ Vþ

S * ;M ðS; 0Þ 1

110 103.5 10 11.24 12.87 15.41 4.166
110 103.5 50 11.61 12.87 15.35 3.739
110 103.5 400 11.63 12.87 15.35 3.721
110 155.3 10 11.39 12.87 13.20 1.807
110 155.3 50 12.79 12.87 12.88 0.096
110 155.3 200 12.87 12.87 12.87 0.006
110 155.3 400 12.87 12.87 12.87 0.002
110 207.0 10 10.64 12.87 13.45 2.813
110 207.0 50 12.72 12.87 12.89 0.170
110 207.0 200 12.86 12.87 12.87 0.011
110 207.0 400 12.87 12.87 12.87 0.003

Notes: The exact value V (S, 0) has been obtained by the numerical integration of (2.9). The interval
error 1 is given by (2.9). Parameter values are the same as in Figure 2, and we have chosen
S* ¼ D þ Ke2rðT2tÞ ¼ 103:5, S* ¼ 1:5 D þ Ke2rðT2tÞ


 �
¼ 155:3 and S* ¼ 2ðD þ Ke2rðT2tÞ


 �
¼

207:0

Table I.
Bounds Vþ

S* ;M ðS; 0Þ and
V2

S* ;M ðS; 0Þ for V (S, 0),
calculated from Theorem
3.4, for several values of
S* and M, and S ¼ 110
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1 ¼ Vþ
S*;M ðS; 0Þ2 V2

S*;M ðS; 0Þ
��� ���: ð4:1Þ

In Table I, we compare the values of the upper and lower bounds Vþ
S*;M ðS; 0Þ and

V2
S*;M ðS; 0Þ, calculated from Theorem 3.4, with the exact value of V (S, 0), obtained by

the numerical integration of (2.9). We show also the interval error 1 associated to both
bounds. Assuming an interval error below the smallest unit of the monetary currency,
for example, 1 , 1022, we obtain the true value of the option. Therefore, for a choice of
S* and M such that 1 , 1022, the difference between Vþ

S*;M ðS; 0Þ and V _
S*;M ðS; 0Þ, is

below the smallest unit of the monetary currency, and the rounded values of
Vþ

S*;M ðS; 0Þ and V2
S*;M ðS; 0Þ coincide. This rounded value is the option value within

the chosen monetary accuracy.
To analyze the global convergence behavior of Vþ

S*;M ðS; 0Þ and V2
S*;M ðS; 0Þ we

chose a fixed value of S, and we change the approximation parameters S* and M.
In Figure 3, we show Vþ

S*;M ðS; 0Þ and V2
S*;M ðS; 0Þ as a function of S*, for several

values of M. Increasing M, the upper and lower bounds of V ðS; 0Þ become close in a
region of the S* axis. A choice of S* in this region, gives better bounds to the value of
the option, for lower values of M (Table I and Figure 3).

For all the examples we have analyzed, a good compromise to determine the value
of the call option is to choose S* ¼ 2ðD þ Ke2rðT2tÞÞ. Then, increasing M, the interval
error decreases. Owing to the fast computational convergence of the expressions in
Theorem 3.4, bounds with interval error below the smallest unit of the monetary
currency are straightforwardly obtained.

5. Concluding remarks
We have obtained an upper and a lower bound for the exact value of a call option on a
stock paying a known discrete dividend at a known future time. We have assumed the
context of a Black-Scholes economy, where, away from the dividend time paying, the
underlying asset price follows a geometric Brownian motion type stochastic process.
The upper and lower bounds both approach the exact value of the option when two
parameters are varied. In practical terms, one of these parameters (S*) can be fixed to

Figure 3.
Bounds Vþ

S* ;M ðS; 0Þ and
V2

S* ;M ðS; 0Þ as a function
of S* , for S ¼ 110 and
several values of M
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the value, S* ¼ 2ðD þ Ke2rðT2tÞÞ where K is the strike, D is the dividend, t is the time
of paying the discrete dividend, and T is the length of the contract. Increasing the
second parameter M, we obtain bounds for the option value with increasing accuracy.
If this accuracy is below the smallest unit of the monetary currency, both bounds
coincide, and we obtain the exact value of the option.

The technique used to construct these bounds relies on the convexity properties of
the option value at maturity, and on a property of the Black-Scholes and diffusion
equations that preserves the convexity of propagated initial conditions. Under this
framework, a similar methodology can be used to determine the value of a put option
on a stock paying a known discrete dividend at a known future time.

From the numerical point of view, the technique developed here reduces to the sum
of a few Black-Scholes type terms, whereas numerical Monte Carlo methods rely on the
poor convergence properties determined by the classical central limit theorem. In our
numerical tests for the determination of the exact price of a call option, the computing
time of our technique (using the Mathematica programming language) is several orders
of magnitude faster than the computing time of finite differences integration
algorithms and of Monte Carlo methods.

Note

1. According to Wilmott (2000), the jump condition on the asset price is known a priori,
implying that there is no surprise in the fall of the stock price. Therefore, in order to avoid
arbitrage opportunities, the value of the option should not change across the dividend date.
This is a no-arbitrage argument.
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