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Abstract

This work analyzes the optimal allocation of assets over the life cycle of an investor who

has the option to invest in his education. We characterize the optimal spending rule for educa-

tion, and compare the optimal asset allocation of such investors with the optimal portfolios of

investors with no extra education. In particular, we are able to describe how the criteria for in-

vesting in risky assets change through time as investors acquire additional education. Our main

findings are as follows. Investors undergoing the educational process tend to invest proportion-

ally more in risky assets during that period than other investors. After the educational period

investments in the risky asset usually decrease. In the working period after the investment in

education a negative covariance between the working income and the returns of the risky asset

induces the proportional investment of educated agents in the risky asset to be larger than the

proportional investment of non-educated agents. For positive covariances, as it increases, the

proportion of wealth invested in the risky asset decreases for both agents. Finally, in the retire-

ment period the investments of people who invested in education earlier are not distinguishable

from those of non-educated.
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1 Introduction

A common investment strategy suggested by financial advisors follows a simple rule of a linearly

decreasing percentage of investors’ wealth in a diversified portfolio of risky assets as one grows

older (see Malkiel, 1996). The problem of asset allocation over the life cycle has received special

attention from scholars and finance practitioners given its practical significance for each investor

during different periods of life. Despite this importance, there is no consensus about the optimal

portfolio choice.

Since the earliest work in this area, the theoretical predictions have differed from the observed

empirical patterns. On the one hand, several empirical papers find evidence for a hump-shaped form

of risky asset holdings over the life cycle (e.g. Ameriks and Zeldes, 2004, Faig and Shum, 2002

and Shum, 2006), with younger people holding a low share of risky assets. On the other hand,

the original theoretical models tell us that younger people should hold a large fraction of their

wealth in risky assets and that this proportion should decrease as the agent grows older, as stated

by Merton (1969) and Samuelson (1969). Merton (1971) has shown this holds when deterministic

working income is added to the investment endowment in a complete-market setting. Such results

are consistent with the classical mean-variance model of portfolio choice, according to which the

holdings of aggressive and conservative investors should differ only in their holdings of cash; the

relative proportion of long-term bonds and stocks should be the same for both types of investors,

regardless of the investors’ planning horizon. As pointed out by Canner, Mankiw, and Weil (1997),

this classical approach is inconsistent with the conventional financial advice in the markets.

Seeking to understand the empirical facts, several models emerged complementing Merton’s

(1969) and Samuelson’s (1969) seminal models. Viceira (2001) added complexity to the theoreti-

cal setting by allowing working income to be uncertain, showing that the investment horizon may

affect the optimal portfolio allocation. The introduction of uncertain sources of income was indeed
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the crucial ingredient to rethink strategic asset allocation. Realizing the failure of Samuelson’s and

Merton’s analysis, some authors suggested alternative techniques. By analyzing who should buy

long-term bonds through a multi-period model incorporating uncertainty in fixed-income invest-

ment, Campbell and Viceira (2001) have shown that aggressive long-term investors should hold

essentially stock, whereas conservative long-term investors should hold more long-term bonds to-

gether with some small amount of cash. The intuition for this result is that, for long-term investors,

the riskless asset is not cash, but rather long-term bonds.

Cocco, Gomes, and Maenhout (2005) and Campbell, Cocco, Gomes, and Maenhout (2005)

characterize the solution of a more complex problem in this same conceptual framework, namely

the optimal choice of portfolio when considering consumption over a life cycle and simultaneous

investment in retirement wealth. Their results from calibration show that the low holdings of the

risky assets by younger people could be explained only by either a significant shock in labor income

or an extremely high correlation between labor income and returns of the risky assets.

In contrast to these papers, we analyze how the optimal allocation of assets over the life cycle

of an investor may be affected by the alternative to invest in an education program. One such

educational program is modeled so as to increase the future expected income by assuming the

possibility of promotion in the job market. Our model considers basic tradeoffs in this decision

process. First, to invest in education an agent will give up some current consumption and reduce

the investment in financial assets; second, the expected increase in future income must compensate

the reduced future investment horizon; third, the change in the optimal risky investment will depend

on the correlation between the returns of the risky assets and the future labor income.

Unlike the findings reported in most earlier theoretical papers, but in line with the empirical

evidence, our model predicts that for a reasonable level of risk aversion, a hump-shaped portfolio

strategy over the life cycle is optimal. To be precise, we find that investors who seek higher ed-

ucation: 1) tend to invest proportionally more in risky assets during the educational period than
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do other investors; 2) the investment in risky assets increases as the expected time until promo-

tion diminishes; 3) following the educational period, investments in risky assets usually decrease.

Furthermore, in the period of active life there are three possibilities: if the work income covaries

positively (and at a high enough level) with the return of the risky asset, investments in that risky

asset are proportionally less than the investments of non-educated individuals, since the working

income is considered to be a risky source; if the covariance is negative, the working income can

be seen as an insurance and the investments in risky assets are proportionally greater among ed-

ucated investors; if the covariance is zero, the investments are proportionally equal to those of

non-educated individuals in the period following promotion and proportionally greater during the

education period.

This work is organized as follows. In Section two we extend Viceira’s (1998) two-period model

to incorporate the possibility of investing in self education, allowing for future job promotion with

corresponding income increase. Section three is concerned with the development of a similar

model, now considering an investor living for an arbitrarily large number of periods. In Section

four we provide different simulations for this dynamic allocation model, considering the life cycle

of investors who have improved their education. Section five concludes.

2 Two-Period Theoretical Model

In this section we develop a two-period model where an economic agent (hereinafter named the

investor) maximizes his or her utility allocating optimally his or her wealth at time t between the

available risky assets and a risk-free asset. When making this decision, the investor must also decide

how much to invest in his or her education. The underlying idea is that an education upgrade may

possibly increase his or her future earnings in the second period.

In this model the agent’s education can be seen as an investment, leading to a promotion and a
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consequent higher wage1. In the first period the investor supports the costs of his or her education,

whereas in the second period he or she may have income compensation due to the promotion

derived from the educational upgrade. The education can also provide “status benefit” for the

investor2.

The investor receives income from his or her work at times t and t + 1, denoted respectively

by Lt and Lt+1. If investment in educational upgrade is made at t, he or she receives a raise in the

t+1 income. Notice that this model has only one investment period. Also, the investor is assumed

to have an initial endowment Wt before receiving the income Lt.

We assume that the investor makes decisions related to portfolio and education choice at time

t. At t + 1 the agent consumes the amount returned by the portfolio plus the income generated by

his or her work at that point in time.

2.1 Certain Promotion

Consider an investor with a two-period life. Following Campbell and Viceira (2002), and discount-

ing the current consumption of this agent, the problem of the investor is reduced to know how

to allocate today’s wealth, depending on two factors: future consumption and current expenditure

with education. The utility function is assumed to be given by

β
C1−γ
t+1

1− γ
+ v(Xt)

where Ct+1 is the t + 1 consumption, Xt is the expenditure with education at time t, the factor γ

denotes the risk aversion coefficient, the discount factor is denoted by β satisfying 0 < β < 1,

and the function v characterizes the utility of increased status originating with the expenditure in

1See Arcidiacono (2004), Mishler (1982), and Clark and Anderson (1992).
2See Mishler (1982) and Clark and Anderson (1992).
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education (such that v0 > 0 and v00 < 0). Notice that the investment Xt may increase utility in two

ways. First, by generating more future income, thus increasing future consumption Ct+1; second,

by increasing the status of the agents who invest in education upgrade.

We next discuss the flow of working income. The working income at time t+1 is assumed to be

uncertain and described by the random variable Lt+1. We assume furthermore that the conditional

distribution of the working income is log-normal. Defining lt+1 ≡ log(Lt+1), this implies that

lt+1 ∼ N(l, σ2l ).

The economy is also characterized by the assets that are transacted. We consider that there are

two types of assets in the market, namely a risky asset with random return Rt+1, and a riskless asset

with return Rf . In this model we assume that the logarithm of the excess return Rt+1 − Rf is a

log-normal variable. Defining rf ≡ logRf and rt+1 ≡ logRt+1, this implies that

rt+1 − rf = µ+ ut+1

where µ ≡ Et[rt+1 − rf ], and the unexpected log-return of the risky asset is conditionally Normal.

In other words,

ut+1 ∼ N(0, σ2u).

Additionally, we assume a possible correlation between the returns of the risky asset and the work-

ing income, given by

covt(lt+1, rt+1) = σlu.

The return on the agent’s portfolio is thus given by

Rpt+1 = αtRt+1 + (1− αt)Rf .
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For simplicity, we shall work with log-returns. Denoting by r the logarithm of the return R, a

second-order Taylor expansion leads to

rpt+1 = rf + αt(rt+1 − rf) +
1

2
αt(1− αt)σ

2
u.

Finally, consider the case where an investment is made in upgrading education. Let Tt+1 denote

the new income of the investor at time t + 1, after the promotion due to the upgrading of his or

her education. For consistency, we shall denote by τ t+1 = log(Tt+1) the logarithm of this new

income. In that case, we assume that the investor’s log-wage lt+1is increased at time t + 1 by a

multiplicative factor z̄ > 1, leading to a working log-income τ t+1 = z̄lt+1, following, therefore, a

stochastic process with log-normal conditional distribution

τ t+1 ∼ N(τ , σ2τ).

Although the income increase is stochastic, this increase is perfectly well-defined once the realiza-

tion of lt+1is known. For this reason we shall refer to this situation as certain increase, as opposed

to the case in the next section, where τ t+1 will depend of the expenditure Xt made in education.

We also assume the possibility of some correlation between the wage increase and the return of the

risky asset,

covt(τ t+1, rt+1) = z̄covt(lt+1, rt+1) = z̄σlu ≡ στu.

2.1.1 The Optimization Problem

From the available wealth, the investor will spend Xt with education, will invest a fraction αt of

the remaining wealth in the risky asset, and a fraction 1−αt in the riskless asset. The optimization
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problem is to choose αt and Xt in order to maximize the expected utility

max
Xt,αt

Et

"
β
C1−γ
t+1

1− γ
+ v(Xt)

#
(1)

subject to

Ct+1 = (Wt + Lt −Xt)(1 +Rpt+1) + Tt+1 (2)

Rpt+1 = αtRt+1 + (1− αt)Rf .

Introducing both restrictions in the objective function, the problem becomes to maximize in order

to Xt and αt the following expression

Et

"
β
{(Wt + Lt −Xt) [1 +Rf + αt(Rt+1 −Rf)] + Tt+1}1−γ

1− γ
+ v(Xt)

#
.

The first-order conditions to solve this problem are respectively,

v0(Xt)

u0(Ct+1)
= β(1 +Rpt+1)

Et[C
−γ
t+1(1 +Rt+1)] = Et[C

−γ
t+1(1 +Rf)].

Taking the logarithm in the last equality and rewriting terms, we obtain

Et[rt+1 − rf ] +
σ2u
2
= γcovt(ct+1, rt+1). (3)

Now let It ≡ Wt + Lt −Xt. Dividing expression (2) for the budget constraint by Lt+1, it follows

that
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Ct+1

Tt+1
=

It
Tt+1

(1 +Rpt+1) + 1.

Following Campbell (1993), we take logarithms on both sides to obtain

ct+1 − τ t+1 = log {exp [(it − τ t+1) + rpt+1] + 1} .

Expanding the right-hand side around the expected values of rp and i− τ , and defining θ ≡ {(i−

τ) + rp}, we have

ct+1 − τ t+1 ≈ k + ρ(it − τ t+1) + ρ(rpt+1),

implying that

ct+1 ≈ k + ρ(it + rpt+1) + (1− ρ)τ t+1,

where

ρ =
exp[(i− τ) + rp]

1 + exp θ
; 0 < ρ < 1,

and k = log [exp (θ) + 1]− ρ (i+ rp − τ) > 0. Replacing the expression for ct+1 in (3) we have

Et[rt+1 − rf ] +
σ2u
2
= γραtσ

2
u + γ(1− ρ)z̄σlu,

and the optimal fraction invested in the risky asset is thus given by

αt =
1

ρ

Ã
µ+ σ2u

2

γσ2u

!
− (1− ρ)

ρ

µ
σlu
σ2u

¶
− (1− ρ)(z̄ − 1)

ρ

µ
σlu
σ2u

¶
.
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2.1.2 Main results and interpretation

The three fundamental equations of this model are

v0(Xt)

u0(Ct+1)
= β(1 +Rpt+1) (4)

ct+1 ≈ k + ρ(it + rpt+1) + (1− ρ)τ t+1 (5)

αt =
1

ρ

Ã
µ+ σ2u

2

γσ2u

!
− (1− ρ)

ρ

µ
σlu
σ2u

¶
− (1− ρ)(z̄ − 1)

ρ

µ
σlu
σ2u

¶
(6)

First, equation (4) expresses the marginal rate of substitution between consumption at time

t + 1 and the amount spent with education at time t. This rate is a function of two variables:

intertemporal discount (β) and the return of portfolio (Rpt+1). Notice that investors with higher

β will have a higher marginal rate of substitution, other things equal, spending less with their

education today and/or consuming more in the future. Also, an increase in the expected portfolio

return, other things equal, will lead the investors to spend less with their education today and/or

expect to consume more in the future.

Equation (5) describes the optimal consumption as given by a constant k plus a weighted sum

of the net wealth it, working income together with education’s gains τ t+1, and portfolio’s return

rpt+1. All three of these variables are positively correlated with investor’s consumption at t + 1.

The weighting parameter ρ is important to determine the optimal portfolio choice.

Finally, equation (6) describes the optimal allocation of wealth in the risky asset. We examine

the three components separately. The first component describes the optimal wealth allocation when

the working income is idiosyncratic, i.e., not correlated with the return of the risky asset. The

second component reflects a hedging strategy to cover the uncertainty associated to the working

income. In other words, the utility for holding a risky asset is not only driven by the excess return
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with respect to its variance, but also from the assets’ ability to protect future consumption from

fluctuations in the working income. If the covariance between lt+1 and rt+1 is positive, then the

working income may be considered as a risky asset, allowing the proportion of wealth invested

in the financial risky asset to decrease. If that covariance is negative, however, this means that

the risky asset is a good protection against the uncertainty of the working income, leading to a

larger proportion of wealth invested in the financial risky asset. The third factor is also a hedging

component. The initial spending with education can also be seen as an investment, generating a

future payoff to the investor. The rise in wage will be a function of the future wealth and may

be correlated with the return of the financial risky asset. In this sense, and if such correlation is

negative, the investment in the financial risky asset may also be seen as an insurance. On the other

hand, if the correlation is positive, the gain may be seen as a risky asset and the investor reduces

his or her initial investment in the financial risky asset.

2.2 Uncertain Promotion

The structure of this section is very similar to the previous. The main difference is that here we

consider that the income increase will depend on the amount Xt spent in education. In other words,

to spend in education does not ensure that the promotion will be obtained, and that future income l

will be multiplied by z̄. We assume hereby that z is an increasing, monotonic function depending

on Xt, such that z = 1 whenever Xt = 0.

2.2.1 The New Optimization Problem

We consider in this section the existence of an increasing, differentiable function

z : X → [1, z̄], with z0 > 0,
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such that the amount received at t + 1 after investing in education is now L
z(Xt)
t+1 instead of Lt+1.

The investor must then maximize the utility given by equation (1), subject to the constraints

Ct+1 = (Wt + Lt −Xt)(1 +Rpt+1) + L
z(Xt)
t+1 (7)

Rpt+1 = αtRt+1 + (1− αt)Rf .

Notice that the main difference with respect to the previous section is that restriction (7) incorpo-

rates the function z(Xt). As before, we substitute both constraints in the expression for Ct+1 in the

argument of the utility, and transform the problem into the maximization of

Et

β
n
(Wt + Lt −Xt) [1 +Rf + αt(Rt+1 −Rf)] + L

z(Xt)
t+1

o1−γ
1− γ

+ v(Xt)

 .
The first-order conditions for this problem are

v0(Xt)

u0(Ct+1)
= β

³
1 +Rpt+1 − z0(Xt)L

z(Xt)
t+1

´
Et[C

−γ
t+1(1 +Rt+1)] = Et[C

−γ
t+1(1 +Rf)].

We can now manipulate these equations, just as in the previous section, to isolate the optimal

investment in the risky asset and the optimal future consumption. We thus have

ct+1 ≈ k + ρ(it) + ρ(rpt+1) + (1− ρ) τ t+1

where now

ρ =
exp (i− τ)

1 + exp θ
(8)
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with θ = {[i− z (X) l] + rp}. Using the expression for ct+1 we then obtain for the fraction of

wealth invested in the risky asset the same formal expression as before

αt =
1

ρ

Ã
µ+ σ2u

2

γσ2u

!
− (1− ρ)

ρ

µ
σlu
σ2u

¶
− (1− ρ) [z (X)− 1]

ρ

µ
σlu
σ2u

¶
.

Notice, however, that there are several dependencies of this expression on the function z(·) through

the presence of θ in the parameters ρrp, ρi, and ρτ , and an explicit dependence on the parameter ρτ .

2.2.2 Interpretation of the new solution

We start by analyzing the equations characterizing the solution of this problem. The first equation

v0(Xt)

u0(Ct+1)
= β

h
1 +Rpt+1 − z0(Xt)L

z(Xt)
t+1

i
(9)

reflects the marginal rate of substitution between the investor’s consumption at time t + 1 and

the amount spent with his education at time t. The main difference with the previous case is the

presence of the last term, related to the increase of future wage. Also notice that, since z0 > 0, we

have from equation (9) that

v0(Xt)

u0(Ct+1)
< β(1 +Rpt+1).

Hence, the marginal rate of substitution for the case of uncertain wage increase is lower than in the

case of certain wage increase. Therefore, in this case of uncertain increase, other things constant,

the investor spends more with education and/or the future consumption is less than in the case of

certain increase. Uncertainty in wage increase provides an incentive to spend more with education

today, increasing the proportion of expected future income generated by education.
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The equation for optimal consumption

ct+1 ≈ k + ρ(it) + ρ(rpt+1) + (1− ρ) τ t+1

is formally similar to equation (5). Therefore, the intuition is the same.

Finally, the same formal similarity applies to the equation for the optimal fraction of wealth

invested in the risky asset

αt =
1

ρ

Ã
µ+ σ2u

2

γσ2u

!
− (1− ρ)

ρ

µ
σlu
σ2u

¶
− (1− ρ) [z(X)− 1]

ρ

µ
σlu
σ2u

¶
. (10)

The main difference with the previous section is that the investor now chooses the optimal portfolio

taking into account the impact of how much is spent with education. Equation (10) reflects this

effect in two ways. First, through the explicit presence of z(X) in the last term. Second, because

ρ depends on z(·). In fact, from equation (8), ρ is an increasing function of z(·) and therefore an

increasing function of Xt.

So, if Xt < z−1(z̄), the first term in (10) is greater than in the case of certain wage increase,

contributing to increase the proportion of wealth in the risky asset. However, notice that as z(X)→

z̄, the case of certain wealth increase is recovered.

The second term clearly decreases with Xt, compensating at least partially the effect of the first

term.

The third term is ambiguous with respect to the effect of an increase in Xt. In fact, the direct

effect of [z(X)− 1] points to an increase of that term, but multiplication by (1 − ρ)/ρ indicates

that the term may decrease as Xt grows. However, a certain number of conclusions may be stated.

Notice that as Xt approaches z−1(z̄), the whole term tends to the value obtained in the case of a

certain wage; also, as Xt → 0, the term vanishes, since z(X) → 1, and hence, would no longer
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influence the optimal asset allocation; finally, this points to the fact that, for small enough Xt, the

whole third term increases with the amount invested in education.

3 Multiperiod Model

In this section we consider that an agent has a life with infinite periods of time. However, at each

point in time there are two possible states of nature: either the agent is employed or retired. The

agent is employed with probability πe, in which case receives a working income, and is retired

with probability πr = 1 − πe. This retirement probability shortens the expected horizon of the

employment duration to 1/πr periods. Moreover, the state of retirement is irreversible, implying

that if an agent is retired from the job market, his or her income will be zero thereafter. After

retirement, there is a constant probability of death πd at each point in time that makes the expected

lifetime after retiring equal to 1/πd periods. Similarly, if the investor has not retired, there is a

probability πp, at each point in time, that the investor is promoted. This promotion probability

makes the expected education’s time horizon to be 1/πp periods. That state is also irreversible, in

the sense that an investor who is promoted will spend no more money with his or her education.

In the context of our model, this means that a promotion raises income in two ways. First, after

the investor’s promotion, the amount spent with education will be zero from then on (Xt = 0)

and second, there will be a wage increase. Of course, at each point in time there is the probability

πs = 1 − πp that the agent does not get the promotion for one more period, in which case the

investor keeps spending with his or her education (Xt > 0) and receives no wage increase.

Assuming that an agent is working for several periods, his working income is subject to a

number of shocks. We model the working income as the process

Lt+1 = Lt exp{g + ξt+1}
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where

ξt+1 v N(0, σ2ξ)

is a random variable whose realization is independent of the realization of the working income.

The logarithm of this income process can also be characterized as

∆lt+1 = g + ξt+1.

The gains from promotion referred to above will be modeled in a similar way to the two-period

model. In particular, we shall assume that when the promotion occurs, the investor receives a new

income τ t+1 each period, where τ t+1 = zlt+1, with fixed z > 1. This leads to a logarithmic increase

per period of the income after promotion, denoted by

∆τ t+1 = z∆lt+1.

The set of possible investments is characterized by two financial assets as before, a risky and a

riskless asset, and the expected log-return in excess is given by Et(rt+1− rt) = µ. The unexpected

log-return of the risky asset, denoted by ut+1, is conditionally homoscedastic and serially non-

correlated, although it may be contemporaneously correlated with innovations in the changes of

the working log-income and, therefore, with the changes of the logarithm of the new income. We

thus assume that

vart(ut+1) = σ2u

covt(rt+1, ξt+1) = σuξ

covt(rt+1,∆lt+1) = σu∆l

covt(rt+1,∆τ t+1) = σu∆τ .
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Finally, we also assume that innovations in the risky asset do not depend on whether the investor

is employed or retired. In other words, the state of nature defining whether or not income is received

is completely idiosyncratic, not depending on the business cycle.

Consider an investor that consumes and invests at different points in time. At time t, his or her

preferences with respect to consumption and investment i periods later, are characterized by the

utility function

U =
C1−γ
t+i

1− γ
+ v(Xt+i).

We assume, whenever necessary, that v is CRRA, with the same risk aversion coefficient as the

consumption term. As before, β denotes the intertemporal discount factor with 0 < β < 1.

3.1 The Optimization Problem

The investor faces the following intertemporal optimization problem.

max
{Ct+i,Xt+i,αt+i}∞i=0

Et+i

( ∞X
i=0

βi

"
C1−γ
t+i

1− γ
+ v(Xt+i)

#
|Lt, ut, ξt

)

subject to

Wt+i+1 = [Wt+i + ιe(1− ιp)Lt+i + ιeιpTt+i − (1− ιp)Xt+i − Ct+i] (1 +Rp,t+i+1) (11)

Rp,t+i+1 = αt(Rt+i+1 −Rf) +Rf , (12)

where

ιe =


1 when investor is employed

0 otherwise
and
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ιp =


1 when the agent is promoted

0 otherwise
and the variable Wt+i+1 in equation (11)

reflects the financial wealth, defined as the amount retained by the investor at the beginning of

period t+ 1 in financial assets that were bought at time t.

In equation (12) the factor αt+i denotes the proportion of wealth invested in risky assets. We

also have Rt+i+1 = exp (rt+i+1) , Rf = exp (rf) . Three possibilities arise from the budget con-

straint in equation (11).

1. The investor may be employed and spend money with his own education, in which case

W es
t+i+1 = (Wt+i + Lt+i −Xt+i − Ct+i)(1 +Rp,t+i+1). (13)

2. An employed investor is promoted, and the restriction reads

W ep
t+i+1 = (Wt+i + Tt+i − Ct+i)(1 +Rp,t+i+1). (14)

3. The investor may be retired

W r
t+i+1 = (Wt+i − Ct+i)(1 +Rp,t+i+1). (15)

Depending on the case we are dealing with, there will be three different Euler equations for the

optimization problem.

In the first case, we write Bellman’s equation as

V (Wt+i) = max
{C+it,Xt+i,αt+i}∞i=0

" ∞X
i=0

βi

Ã
C1−γ
t+i

1− γ
+ v(Xt+i)

!
| Lt, ut, ξt

#
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corresponding to maximizing with respect to Ct+i, Xt+i, αt+i the expression

Ces1−γ
t+i

1− γ
+v(Xt+i)+βEt+i

©
πe
£
πpV (W ep

t+i+1) + (1− πp)V (W es
t+i+1)

¤
+ (1− πe)(1− πd)V (W r

t+i+1)
ª
.

The first-order conditions for this problem are the following. For αt,

Et+i[V
0(Wt+i+1)((1 +Rt+i+1)− (1 +Rf))] = 0

implying that

Et+i

£
u0
¡
Ces
t+i+1

¢
(1 +Rt+i+1)

¤
= Et

£
u0
¡
Ces
t+i+1

¢
(1 +Rf)

¤
.

With respect to C, we have

u0(Ces
t+i) = βEt+i

©£
πe hV 0i+ (1− πe)(1− πd)βV 0 ¡W r

t+i+1

¢¤
(1−Rp,t+i+1)

ª

where

hV 0i = πpV 0 ¡W ep
t+i+1

¢
+ πsV 0 ¡W es

t+i+1

¢
and V 0(W ) = u0(C) by the envelope theorem. This leads to

Et+i

(
β

"
πe hCi+ (1− πe)βr

µ
Cr
t+i+1

Ces
t+i

¶−γ#
(1−Rp,t+i+1)

)
= 1

where hCi = πp
³
Cep
t+i+1

Ces
t+i

´−γ
+ (1− πp)

³
Ces
t+i+1

Ces
t+i

´−γ
.
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Finally, with respect to X, we have

v0(Xes
t+i) = βEt+i

©
[πeπsV 0(W es

t+i+1)](1−Rp,t+i+1)
ª

(16)

and V 0(W ) = v0(X) by the envelope theorem. This leads to

1

β
= Et+i

·
πeπs

v0(Xt+i+1)

v0(Xt+i)
(1−Ri,t+i+1)

¸
.

In the second case (promoted investor), we have

V (Wt+i) = max
{Ct+i,Xt+i,αt+I}∞i=0

" ∞X
t=0

βi

Ã
C1−γ
t+i

1− γ
+ v(Xt+i)

!
| Lt, ut, ξt

#

corresponding to

max
{Ct+i,Xt+i,αt+i}∞t=0

Cep1−γ
t+i

1− γ
+ v(Xt+i) + βEt+i

£
πeV

¡
W ep

t+i+1

¢
+ (1− πe)

¡
1− πd

¢
V
¡
W r

t+i+1

¢¤

The first-order conditions for this problem are the following. For αt,

Et+i[V
0(Wt+i+1)((1 +Rt+i+1)− (1 +Rf))] = 0

leading to

Et+i[u
0(Cep

t+i+1)(1 +Rt+i+1)] = Et+i[u
0(Cep

t+i+1)(1 +Rf)].

With respect to C,

u0(Cep
t+i) = [(π

eβEt+iV
0(Wt+i+1) + (1− πe)(1− πd)βEt+iV

0(Wt+i+1))(1 +Rp,t+i+1)].
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Let βr = β(1− πd). Since V 0(Wt+i) = u0(Ct+i), the first-order condition reads

Et+i

("
πeβ

µ
Cep
t+i+1

Cep
t+i

¶1−γ
+ (1− πe)βr

µ
Cr
t+i

Cep
t+i

¶#
(1 +Ri,t+i+1)

)
= 1. (17)

Finally, in the third case (retired investor) we have

V (Wt+i) = max
{Ct+i,Xt+i,αt+i}∞t=0

" ∞X
i=0

βi

Ã
C1−γ
t+i

1− γ
+ v(Xt)

!
/Lt+i, ut+i, ξt+i

#

= max
{Ct+i,Xt+i,αt+i}∞t=0

Cr1−γ
t+i

1− γ
+ v(Xt+i) + β(1− πd)Et+iV (W

r
t+i+1).

The first-order conditions are now

C : u0(Cr
t+i) = β(1− πd)Et+iV

0(Wt+i+1)(1 +Rp,t+i+1)

V 0(W ) = u0(C)

=⇒ u0(Cr
t+i) = β(1− πd)Et+i{u0(Cr

t+i+1)(1 +Rp,t+i+1)}

αt : Et+i[V
0(W r

t+i+1)((1 +Rt+i+1)− (1 +Rf))] = 0

=⇒ 1 = Et+i

"
βr
µ
Cr
t+i+1

Cr
t+i

¶−γ
(1 +Ri,t+i+1)

#
. (18)

Notice that βr = β(1− πd) may be read as an effective discount rate, incorporating the proba-

bility of death. The effect of increasing the expected life after retirement (lowering πd) is equivalent

to having a larger effective discount factor βr, leading the investor to give a relatively larger value

to the present. This rephrases the same idea as in Viceira (2001).

3.2 An approximate log-linear solution

Just as in Viceira (2001), we follow Campbell and Viceira (1999) to find an approximate solution

to the problems above, through the method of undetermined coefficients. This process requires
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three steps. First, we make a log-linear approximation of the budget constraints and of the Euler

equation around the steady states. Second, we look for optimal policy functions for consumption

and portfolio allocation using the log-linearized equations. Third, we identify the coefficients of

the policy functions using the undetermined coefficient method.

This procedure is possible since the assumptions about preferences, working income, wealth

transfer, and the set of investment possibilities ensure positive consumption, savings, and financial

wealth along the optimal path. In that case, the state variable defined as the log of the ratio between

the financial wealth and the working income is well defined and stationary3.

Two facts are important to drive results. First, the marginal utility of consumption tends to

infinity as the consumption is reduced to zero; and second, that in each period there is a strictly

positive probability that the working income is zero (in case of retirement). Due to these facts,

the investor chooses the optimal rules on consumption, investment, expenses with education, and

savings in order to ensure a strictly positive consumption in future periods. This implies not only

attaining each period with a strictly positive endowment, namely W es
t+i > 0,W

ep
t+i > 0, but also that

every period ends with strictly positive savings, W es
t+i+Lt+i−Xt+i−Ces

t+i > 0 and W ep
t+i+Tt+i−

Cep
t+i > 0. Therefore, the logarithms of these quantities are well defined. Similarly, in the case of

retirement we must have W r
t+i and W r

t+i − Cr
t+i > 0. We thus have three budget constraints to be

log-linearized.

In the first case (employed investor educating himself), from equation (13) we have

W es
t+i+1

Lt+i+1
=

Lt+i

Lt+i+1

µ
1 +

W es
t+i

Lt+i
− Xt+i

Lt+i
− Ct+i

Lt+i

¶
(1 +Rp,t+i+1),

3Viceira (2001) demonstrates the stationarity of log (W/L) along the optimal path.
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leading to

wes
t+i+1 = log

£
1 + exp

¡
wes
t+i − lt+i

¢− exp (xt+i − lt+i)− exp
¡
cest+i − lt+i

¢¤
+lt+i+1 −∆lt+i+1 + resp,t+i+1. (19)

Linearizing equation (19) around the expected values of (ct+i− lt+i), (xt+i− lt+i) and (wep
t+i− lt+i)

leads to

wes
t+i+1 − lt+i+1 ≈ kes + ρesw (w

es
t+i − lt+i)− ρesx (xt+i − lt+i) (20)

−ρesc (cest+i − lt+i)−∆lt+i+1 + resp,t+i

where kes, ρesw , ρesc , ρesx are log-linearized constants described in Appendix A.

In the second case (employed investor promoted), we have from equation (14)

W ep
t+i+1

Tt+i+1
=

Tt+i
Tt+i+1

(1 +
W ep

t+i

Tt+i
− Cep

t+i

Tt+i
)(1 +Rp,t+i+1)

leading to

wep
t+i+1 = log

£
1 + exp

¡
wep
t+i − τ t+i

¢
+ exp

¡
cept+i − τ t+i

¢¤
+τ t+i+1 −∆τ t+i+1 + repp,t+i+1. (21)

Linearizing equation (21) around the expected values of (ct+i − τ t+i) and (wep
t+i − τ t+i) leads to

wep
t+i+1 − τ t+i+1 ≈ kep + ρepw (w

ep
t+i − τ t+i)− ρepc (c

ep
t+i − τ t+i)−∆τ t+i+1 + repp,t+i+1 (22)

where, kep, ρepw , ρepc are log-linearized constants described in Appendix A.
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Finally, for the retired investor we have from equation (15)

W r
t+i+1

Wt+i
= (1− Ct+i

Wt+i
)(1 +Rp,t+i+1)

leading to

wr
t+i+1 − wt+i = log [1− exp{ct+i − wt+i}] + rrp,t+i+1.

Linearizing this last equation around the expected value of (ct+i − wt+i) and E(wr
t+i − wt+i),

we obtain

wr
t+i+1 − wt+i = kr − ρrc(ct+i − wt+i) + rrp,t+i+1 (23)

where kr, ρrc are log-linearized constants described in Appendix A. All these constants ki, ρiw, ρic, ρix,

for i = r, es, ep depend only on the long-run expected value of the logarithm of ratios between

financial wealth, working income, gains of promotion, and consumption. Campbell and Viceira

(1999) derive an approximate expression for the log-return of the portfolios

log (1 +R) = r

Rp,t+i+1 = αRt+i+1 + (1− α)Rf = α (Rt+i+1 −Rf) +Rf

rp,t+i+1 = α (rt+i+1 − rf) + rf +
1

2
α (1− α)σ2u.

Notice that the Euler equations (16), (17), and (18) are non-linear. However, we may find an

approximate log-linear solution for each of them4

• In the first case, the Euler equation for optimal consumption is

1 = Et

("
βπeπp

µ
Cep
t+i+1

Ces
t+i

¶−γ
+ βπeπs

µ
Cep
t+i+1

Cep
t+i

¶−γ
+ (1− πe)βr

µ
Cr
t+i+1

Cep
t+i

¶−γ#
(1−Rp,t+i+1)

)
.

4Each of these Euler equations is derived in Appendix A.
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Define A(u, v) = −γEt+i

¡
cut+i+1 − cvt+i

¢
+ 1

2
vart+i

£
ri,t++i1 − γ

¡
cut+i+1 − cvt+i

¢¤
for u =

es, ep, r and v = es, ep, r. Log-linearizing the Euler equation yields

0 = Et+i(ri,t+i+1) + πe
X
j=p,s

πj {log β +A(ej, es)}+ (1− πe) {log βr +A(r, es)} . (24)

The Euler equation for the amount spent with education is

1

β
= Et{πeπsv

0(Xt+i+1)

v0(Xt+i)
(1−Ri,t+i+1)},

becoming after log-linearization

0 = πeπsEt

½
log β − γ(xt+i+1 − xt+i) + ri,t+i+1 +

1

2
vart+i [ri,t++i1 − γ(xt+i+1 − xt+i)]

¾
.

(25)

The Euler equation for the second case is

1 = Et

("
πeβ

µ
Cep
t+i+1

Cep
t+i

¶1−γ
+ (1− πe)βr

µ
Cr
t+i

Cep
t+i

¶#
(1 +Ri,t+i+1)

)
.

Log-linearizing this expression we obtain

0 = Et+i(ri,t+i+1) + πe {log β +A(ep, ep)}+ (1− πe) {log βr +A(r, ep)} . (26)

Finally, for the third case, the Euler equation is

1 = Et

"
βr
µ
Cr
t+i+1

Cr
t+i

¶−γ
(1 +Ri,t+i+1)

#
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and the log-linearized expression is

0 = log βr +Et+i(ri,t+i+1) +A(r, r). (27)

With this set of approximated analytical solutions we may now characterize the optimal choices

of consumption and investment.

In the next sections we shall characterize the optimal choices for investors who retired, for

investors who are employed but were promoted, and finally, for those investors who did not yet

receivea promotion and continue to invest in their education.

Due to the fact that retirement is irreversible, the optimal policy for retired investors does not

depend on the optimal policies of employed investors. However, when the investor is employed,

he or she must consider the possibility of retiring in order to decide when and how to save. A

similar argument applies to the promotion process. After a promotion, the optimal policy should

not depend on the optimal policy if he were still without his promotion. However, while the investor

stays in the current job, he must consider the possibility of a future promotion in order to define his

optimal allocation policy.

3.3 Choices of a retired investor

When the investor is retired the working income is zero in all future periods by assumption. There-

fore, the investor makes his choices according only to his wealth. The investor faces a classi-

cal decision for which a closed form solution has existed since the papers of Merton (1969) and

Samuelson (1969)). In this case, the solution method described above produces the exact solution

up to the discrete-time approximation to the log return on wealth.

Proposition 1 The optimal rules for consumption and portfolio investment when the working in-
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vestor is retired are:

crt+i = br0 + br1wt+i (28)

αr =
µ+ σ2u

2

γbr1σ
2
u

(29)

where br1 = 1 and

br0 = −
µ
1

br1ρ
r
c

¶
·
·µ
1

γ
− br1

¶
E[rp,t+i+1] +

1

γ
log β +

1

2γ
(1− γbr1)

2vart+i(rp,t+i+1)− br1k
r

¸
.

Proof. See Appendix B

This Proposition presents the optimal portfolio rule as depending on the parameters of the

consumption function. We must then start characterizing the optimal consumption in this case,

and then move to the analysis of the optimal portfolio.

3.3.1 Optimal consumption

The above Proposition 1 shows that the logarithm of the consumption is a linear function of the

state variable given by the logarithm of the financial wealth. The slope of this relationship (br1) is

the elasticity of the consumption with respect to the financial wealth. This elasticity is exactly one

in the retirement state, implying a constant ratio consumption/wealth during the retirement period.

The intercept br0 characterizes the constant consumption-wealth ratio of retired investors. This

term shows that consumption is affected by several factors. The relative consumption increases with

the discount rate. It also increases with the portfolio’s expected return for those retired investors

whose elasticity of intertemporal rate of substitution is less than the elasticity of consumption with

respect to his or her wealth ( 1
γ
− br1) < 0. On the other hand, if the retired investor has an in-

tertemporal elasticity greater than the consumption elasticity ( 1
γ
− br1) > 0, the consumption will
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tend to decrease since the investors choose to save more, given that the substitution effect domi-

nates. There also exists a precautionary saving effect given by the variance of the equation above.

The magnitude of this effect is proportional to the coefficient of relative risk aversion and wealth

elasticity of consumption.

3.3.2 Portfolio choice

Proposition 1 also characterizes αr, the optimal proportion of wealth to be invested by the retired

investor in the risky asset. Notice that there is only one component in the expression for αr. It

represents the allocation that would be optimal if there were no income being received by the

investor. This term is proportional to the asset risk premium and decreasing with the coefficient

of risk aversion γ. Also, it decreases with the consumption elasticity br1. This term is known as the

myopic portfolio rule (see Campbell and Viceira, among others).

3.4 Choices of a promoted investor

In the case studied in this section, the investor faces the uncertainty about being still employed

in the next period. Since the investor was already promoted, he makes his choice based on the

working income, the extra amount of wage that he received with the promotion, and consumption.

We may now characterize the optimal allocation under such circumstances.

Proposition 2 The optimal rules for consumption and optimal portfolio investment when the work-

ing investor is promoted are:

cept+i − τ t+i = bep0 + bep1 (wt+i − τ t+i) (30)

αep =
µ+ σ2u

2

γbc1σ
2
u

− πe(1− bep1 )σξu
bc1σ

2
u

− πe(1− bep1 )(z − 1)σξu
bc1σ

2
u

(31)
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where bc1 = πebep1 + (1− πe)br1 and 0 < bep1 < 1 with

bep0 = − 1

[(1− πe) + ρepc bc1]
[

µ
1

γ
− bc1

¶
Et+i(rp,t+i+1) +

1

γ
(πe log β + (1− πe) log βr)

+
1

2γ
V ep + (bc1 − 1)zg − bc1k

ep − (1− πe)br0].

Proof. See Appendix B5.

Just as in Proposition 1, the above result shows that the optimal rule for the portfolio allocation

depends on parameters of the optimal consumption rule.

3.4.1 Optimal Consumption

Proposition 2 shows that the logarithm of the ratio consumption/new income is a linear function

of the logarithm of the state variable, the ratio wealth/new working income. The slope bep1 of this

relationship is the elasticity of the consumption with respect to the financial wealth in the state

where the investor is employed and promoted. Similarly, 1 − bep1 is the elasticity of consumption

with respect to the new working income. Moreover, since we know that the gains of promotion are

proportional to the working income (τ = zl) , then the elasticity of the consumption with respect

to the promotion gain is (1− bep1 )(z − 1).

The exponential of the intercept of the linear relationship (bep0 ) is a factor scaling the optimal ra-

tio consumption/working income above or below the current ratio between wealth and working in-

come. As in the case of the retired investor, the optimal consumption is affected by several factors.

First, relative consumption is increasing in the interest rate. The relative consumption increases

with the discount rate. It also increases with the expected return of the optimal portfolio for retired

investors who have intertemporal substitution elasticity lower than the elasticity of consumption

5In Viceira (2001), the term bc1k
ep in our last line reads simply kep. This is responsible for the main differences

between our simulation when we make z = 1 to recover his case, and his simulation. Qualitatively, however, the results
do not change.
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with respect to wealth
³
1
γ
− bel1

´
< 0. If the reverse happens, however, and

³
1
γ
− bel1

´
> 0, con-

sumption will tend to diminish, since investors will prefer to save more, given that the substitution

effect dominates. There also exists a precautionary saving effect given by the variance of the above

equation. Finally, bep0 is an increasing function of the variability of the working income (g) and on

the gains of promotion (z). An investor who expects his or her working income to increase in the

future, may feel freer to consume a larger fraction of his or her current resources.

3.4.2 Portfolio Choice

Proposition 2 also characterizes the optimal proportion αep of wealth invested in risky assets. No-

tice that there are three main components in this equation. The first represents how the allocation

would be if the working income had no impact and if there were no promotion at all. This first term

is proportional to the risk premium of the risky asset and proportional to the inverse to the risk aver-

sion coefficient γ, and to the elasticity of consumption with respect to the wealth. It is important to

notice that the consumption/wealth elasticity in this equation is given by bc1 = πebep1 + (1− πe)br1,

an average elasticity considering the different states of nature. In particular, bep1 < br1 implies that

employed investors are less risk averse than retired investors (once that br1 = 1 and 0 < bep1 < 1).

The second term explains the relationship between the working income and allocation in risky

assets. If this term is different from zero it is because somehow the working income is related to

the return on the risky asset. If there is a positive covariance, the working income is increasing

the risk of the investor. In that case, the investor will seek to diminish the risk, lowering his or her

investments in the risky asset. In the opposite case of a negative covariance, working income can

be seen as an insurance against the position on the risky asset. In that case, investors may increase

their position in the risky asset. That is why this second term is known as the hedging term.

The third term describes the position of the investor reflecting how the return of the risky asset

is correlated with the gains of education provided by the promotion. Notice that the gain is pro-
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portional to the investor working income. Therefore, this term is non-zero as long as the working

income covaries with the return of the risky asset. Notice also that the coefficient z denoting the

fraction of income that is offered to the agent as a rise of his wage is proportional to the inverse

to the fraction of wealth invested in the risky asset when the considered covariance is positive. In

other words, in that case the rise would be increasing the risk and the investor tends to compensate

that by investing less in the risky asset. Clearly the gains of promotion will act as an insurance

against the risky asset in the opposite case of a negative covariance, and the larger the fraction of

gains, the larger will be the proportion of wealth invested in the risky asset.

Proposition 3 When the working income is independent of the return on the risky asset, promoted

investors invest a higher fraction of their savings in the risky asset than do retired investors.More-

over, limπe→0 αep = αr.

Proof. Take σξu = 0, αep =
µ+

σ2u
2

(γbc1σ2u)
and αr =

µ+
σ2u
2

(γbr1σ2u)
. Since bc1 = πebep1 +(1−πe)br1 and bep1 < br1,

it follows that bc1 < br1 ⇒ αep > αr. Besides, when πe → 0⇒ bc1 → br1, leading to αep → αr.

Intuitively, when the investor is retired he will have one less source of income than in the

case where he is working. Therefore, the effect in consumption of an increase in wealth would

be relatively greater to the retired investor, and his consumption/wealth elasticity would be larger.

Thus, considering the idiosyncratic risk of working income, the allocation in risky assets is rel-

atively greater for the employed than for the retired investor. This Proposition shows that with

non-stochastic working income, human capital is equivalent to an implicit investment in a riskless

asset, allowing to increase the proportion of wealth invested in the risky asset.

3.5 Choices of an employed investor spending in education

As in the previous section, since the investor is employed he faces the possibility of two different

states in the future. Either the investor is employed in the next period with probability πe, receiving
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a working income, or the investor is retired with probability 1− πe, receiving no working income.

However, there is an additional source of uncertainty, namely whether he will be promoted in the

next period or not. For simplicity, we assume that the chance of promotion is greater than the

possibility of retirement of the agent, that is:

1

πr
>
1

πp
⇒ πp > (1− πe).

The uncertainty about whether or not the agent will be promoted in the next period exists only while

the investor is employed. Given all these considerations, the employed investor will then decide on

the consumption level, the optimal portfolio of financial assets, and how much to spend with his

education looking for future promotion (or better job).

We may now characterize the optimal rules characterizing those decisions.

Proposition 4 The optimal rules for the consumption of the investor, for how much is spent with

education and for the investment in the portfolio when the investor is working are

cest+i − lt+i = bes0 + bes1 (wt+i − lt+i) (32)

xt+i − lt+i = bes2 + bes3 (wt+i − lt+i) (33)

αes =
µ+ σ2u

2

γbcc1 σ
2
u

− πeπs(1− bes1 )σξu
bcc1 σ

2
u

− πeπp(1− bep1 )zσξu
bcc1 σ

2
u

(34)

where 0 < bes1 , b
es
3 < 1, bcc1 = πe(πpbep1 + πsbes1 ) + (1− πe)br1 and

bes0 = − 1

[(1− πeπs) + bcc1 ρ
es
c ]
[

µ
1

γ
− bcc1

¶
Et+i(rp,t+i+1) +

1

γ
(πe log β + (1− πe) log βr) +

1

2γ
V es + bcc1 (k

e − bes2 ρ
es
x )− g(bcc1 − 1)− (πeπpbep0 + (1− πebr0))− πeπp(1− bep1 )(z − 1)g]
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bes2 = − 1

(1 + bes1 ρ
es
x )
[

µ
1

γ
− bes1

¶
Et+i(rp,t+i+1) + log β − g(1− bes1 ) +

+
1

2
vart+i(rp,t++i1 − γ(cest+i+1 − xt+i))− bes0 + bes1 (k

es − ρesc b
es
0 )].

Proof. See Appendix B.

This Proposition shows that the optimal portfolio rule in the case under study depends on the

parameters of the functions describing the consumption and spending with education. We shall

analyze each of these functions.

3.5.1 Optimal Consumption

Proposition 4 shows that the logarithm of the ratio consumption/working income is a linear function

of the logarithm of the state variable, the ratio wealth/working income. The slope of this relation-

ship (bes1 ) is the elasticity of the consumption with respect to the financial wealth in the state where

the investor is employed with no promotion. Similarly, 1− bes1 is the elasticity of consumption with

respect to the working income.

The exponential of the intercept of the linear relationship (bes0 ) is a factor scaling the optimal

ratio consumption/working income above or below the current ratio between wealth and working

income. As in both cases studied above, the optimal consumption is affected by several factors.

First, relative consumption is decreasing in β. It also increases with the expected return of the

optimal portfolio for investors who have intertemporal substitution elasticity lower than the elas-

ticity of consumption with respect to wealth
³
1
γ
− bes1

´
< 0. If the reverse happens, however, and³

1
γ
− bes1

´
> 0, consumption will tend to diminish, since investors will prefer to save more, given

that the substitution effect dominates. There also exists a precautionary saving effect given by the

variance of the above equation. Finally, bes0 is an increasing function of the variability of the work-

ing income g. An investor who expects his working income to increase in the future, may feel freer

to consume a larger fraction of his current resources.
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In addition, notice that bes2 is the intercept of the equation characterizing the amount spent with

education. Hence, the more is spent with the education, the less the investor consumes.

3.5.2 Optimal amount spent with education

Proposition 4 shows that the logarithm of the ratio between the amount spent with education and the

working income is a linear function of the logarithm of the state variable, the ratio wealth/working

income. The slope of this relationship (bes3 ) is the elasticity of the amount spent with education

with respect to the financial wealth in the state where the investor is employed without promotion.

Similarly, 1 − bes3 is the elasticity of amount spent with education with respect to the working

income.

The exponential of the intercept of the linear relationship (bes2 ) is a factor scaling the optimal

ratio between the amount spent with education and the working income above or below the current

ratio between wealth and working income. As above, the optimal consumption is affected by

several factors. First, the relative amount spent decreases with β. It also increases with the expected

return of the optimal portfolio for investors who have intertemporal substitution elasticity lower

than the elasticity of consumption with respect to wealth
³
1
γ
− bes1

´
< 0. If the reverse happens,

however, and
³
1
γ
− bes1

´
> 0, consumption will tend to diminish, since investors will prefer to save

more, given that the substitution effect dominates. There also exists a precautionary saving effect

given by the variance of the above equation. Finally, bel2 is an increasing function of the variability

of the working income. An investor who expects his working income to increase in the future, may

feel freer to consume a larger fraction of his or her current resources.

3.5.3 Optimal portfolio

Proposition 4 also characterizes the optimal proportion αes of wealth invested in risky assets in this

specific case. Notice that there are three main components in this equation. The first component
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represents how the allocation would be if the working income had no impact. This first term

is proportional to the risk premium of the risky asset and proportional to the inverse to the risk

aversion coefficient γ, and to the elasticity of consumption with respect to the wealth. It is important

to notice that the consumption/wealth elasticity in this equation is bcc1 = πe(πpbep1 + πsbes1 ) + (1−

πe)br1, an average elasticity considering the different states of nature. In particular, since be1 =

πpbep1 + πsbes1 < br1, this would imply that employed investors are less risk averse than retired

investors.

The second term explains the relationship between the working income and allocation in risky

assets. Just as before, if this term is different from zero it is because somehow the working income

is related to the return on the risky asset. If there is a positive covariance, the working income is

increasing the risk of the investor. In that case, the investor will tend to diminish the risk, lowering

his or her investments in the risky asset. In the opposite case of a negative covariance, working

income can be seen as an insurance against the position on the risky asset. In that case, investors

may increase their position in the risky asset. Again, this second term is known as the hedging

term.

The third term describes the position of the investor reflecting how the return of the risky asset

is correlated with his gains of education that will be provided by the promotion in the future. Notice

that, although we are considering the case where the promotion has not yet occurred, the investor

must make his choices strategically, knowing that at some point in the future his salary may rise.

Also, recall that the gain is proportional to the investor working income. Therefore, this term is

non-zero as long as the working income covaries with the return of the risky asset. Notice also

that the coefficient z denoting the fraction of income that is added to his wage is proportional to

the inverse to the fraction of wealth invested in the risky asset when the considered covariance is

positive. In other words, in that case the gain would be increasing the risk and the investor tends to

compensate that by investing less in the risky asset. Again, it is clear that it will act as an insurance
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against the risky asset in the opposite case of a negative covariance, and the larger the fraction of

gain, the larger will be the proportion of wealth invested in the risky asset.

Proposition 5 When the working income is independent of the return on the risky asset, working

investors who are still spending in their education invest a lower fraction of their savings in the risky

asset than promoted investors if bes1 > bep1 , and invest a greater fraction if bes1 < bep1 . Additionally,

working investors invest a larger fraction of their savings in risky assets than do retired investors.

Moreover, limπs→0 αes = αep, and limπe→0 αes = αr.

Proof. Take σξu = 0, αes =
µ+

σ2u
2

γbcc1 σ2u
, αep =

µ+
σ2u
2

γbc1σ
2
u
, and αr =

µ+
σ2u
2

γbr1σ
2
u
. Since bcc1 = πe(πpbep1 + πsbes1 ) +

(1− πe)br1 and bc1 = πebep1 + (1− πe)br1 if bes1 < bep1 ⇒ bcc1 < bc1 ⇒ αes > αep. On the other hand,

if bes1 > bep1 ⇒ bcc1 > bc1 ⇒ αes < αep. Similarly, since bcc1 = πe(πpbep1 + πsbes1 ) + (1− πe)br1, once

be1 < br1 ⇒ bcc1 < br1 ⇒ αes > αr. Besides, when πs → 0 ⇒ bcc1 → bc1 and αes → αel. Moreover,

πe → 0⇒ bcc1 → br1 and αes → αr.

Different from Proposition 3, it is not clear if bep1 < (>)bes1 (b
c
1 < (>)bcc1 ). However, since the

working income path is longer to the investors at this stage of life, and they expect their income

to rise, it is natural that their consumption/wealth elasticity be lower than in forward stages of life.

Then, we can expect that in the early phase of life, when the investor is educating himself, he makes

more investment in the risky asset.

Therefore, just as before, this Proposition shows that with non-stochastic working income, hu-

man capital is equivalent to an implicit investment in a riskless asset, allowing to increase the

proportion of wealth invested in the risky asset.

4 Calibration

In this section we illustrate the analytical results presented above. A calibration exercise is based

on an empirically plausible parameterization of the process for asset returns and the process for
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individual labor income6.

The optimal policies in the periods pre- and post-promotion depend on ρesx , ρesc , ρesw , ρepc , and ρepw

respectively, and the log-linerization parameters constants in the budget constraint (equations (20)

and (22)). But these constants are endogenous parameters, because they are monotonic functions of

the mean financial ratio wealth-labor income. In fact, equations (30), (31), and (32), (33), (34) for

the optimal policies and the equations for the constants (given in the Appendix) define a non-linear

mapping of the constants onto themselves.

We solve for the fixed point in this mapping using a recursive algorithm. First we define a set

of parameter values, next we compute br0 and αr (which do not depend on any log-linearization

constants), and we choose initial values for the log-linearization constants7. Then, we compute

bep0 , b
ep
1 , b

es
0 , b

es
1 , b

es
2 , b

es
3 , α

ep, and αes, using them to obtain a new set of values fo the log-linerization

parameters constants in the budget constraint. From this new set of constants, we can find new val-

ues for the optimal policies in the employment state. This recursion continues until the convergence

is achieved.

The values for the parameters describing the investment opportunity set are based on the his-

torical estimates of the average equity premium, the short-term real interest rate, and the variance

of excess stock returns in the U.S. stock market8. The return of the riskless asset Rf is set to 2%

per year. The standard deviation of unexpected log excess returns (σu) is set to 18% per year.

The log excess return on the risky asset (µ) is set to 4.21% per year to match the historical 6%

excess return on equities. The values for the parameters describing the labor income process are

based on the most recent microeconometric estimates of equation Lt+1 = Lt exp{g + ξt+1}. The

standard deviation of innovations in log labor income (σξ) is set to 10% per year. Expected log

6The algorithm and the parameters are the same used by Viceira (2001).
7We choose the initial values for the constants so that ρesx , ρesc , ρesw > 0, ρepc , ρepw > 0 and 1 − ρesw + ρesc + ρesx >

0, 1− ρepw + ρepc > 0. This ensures that kes and kep are defined.
8Campbell, Lo, and MacKinlay (1997).
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income growth (g) is set so that the expected income growth equals 3% per year. After promotion,

the agent has an wage upgrade of 50%, which means that h = 0.405.

Two different values are considered for correlation between innovations in log labor income

and innovations in stock returns: 0% and 25%. The zero correlation value represents the important

benchmark case of idiosyncratic labor income risk, and 25% correlation value is useful to illustrate

the interaction of hedging and risk aversion on optimal portfolio demand.

Tables I and II report the optimal policies for relative risk aversion coefficients γ = 3 and 5,

expected number of years until retirement {35, 30, 25, 20, 15, 10, 5}, and expected number of

years until promotion {15, 10, 5}. Table I presents the results when labor income is idiosyncratic,

and Table II presents results when there is a 25% correlation between unexpected stock returns

and shocks to labor income. The expected lifetime after retirement is set to 10 years, and the time

preference rate is set to 10% per year.
 Table I - Proportion of wealth invested in risky portfolio (Correlation Zero)
Expected time until promotion 15 10 5
Expected time until retirement 35 30 25 20 15 10 5 Retired

RRA
3 with educ. 82.43% 80.18% 79.42% 72.42% 69.61% 66.47% 62.33% 59.98%

without educ. 81.17% 78.15% 75.19% 72.42% 69.61% 66.47% 62.33% 59.98%
5 with educ. 40.52% 40.79% 42.10% 38.87% 38.45% 37.84% 36.87% 35.99%

without educ. 39.59% 39.39% 39.17% 38.87% 38.45% 37.84% 36.87% 35.99%

Table I reports αes, αep, and αr when labor income risk is uncorrelated with stock market risk.

As predicted by propositions 3 and 4, the share of stocks in savings is routinely larger in education

state than in promoted state and larger in employment state than in retired state. Intuitively, when

labor income risk is idiosyncratic, no retired investors choose their portfolios as if their human

capital resembles a forced investment on the riskless asset, which is reinforced when the agent

invest in his own education. This investment is larger for investors with longer horizons, because

expected future labor income, relative to its current level, is increasing in the expected retirement

horizon. Therefore, it is optimal for investors with longer horizons to hold a larger fraction of their

financial wealth in stocks.

The interaction between hedging, retirement horizons, and risk aversion is illustrated in Table
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II. This table shows that a small, positive correlation between labor income risk and stock market

risk has significant negative effects on the optimal portfolio demand for stocks. Both tables show

that the fraction invested in risky asset goes down when risk aversion increases.
 Table II - Proportion of wealth invested in risky portfolio (Correlation 0.25)
Expected time until promotion 15 10 5
Expected time until retirement 35 30 25 20 15 10 5 Retired

RRA
3 with educ. 77.05% 75.35% 74.80% 69.42% 67.30% 64.91% 61.76% 59.98%

without educ. 76.26% 73.94% 71.70% 69.54% 67.38% 64.97% 61.79% 59.98%
5 with educ. 38.72% 38.90% 39.70% 37.70% 37.46% 37.05% 36.52% 35.99%

without educ. 38.20% 38.08% 37.95% 37.76% 37.50% 37.07% 36.53% 35.99%

Table III shows the ratio of hedging component to total demand of risky assets. In all periods,

the positive correlation of human capital with stock returns makes investors reduce their exposure

to risk, decreasing their investments in risky assets. Notice that for both types of risk aversion, the

hedging term represents a significant fraction of total portfolio at long retirement horizons, reaching

almost 7% of the total demand of risky assets.
 Table III - Hedging Component
Expected time until promotion 15 10 5
Expected time until retirement 35 30 25 20 15 10 5 Retired

RRA
3 with educ. -6.98% -6.41% -6.18% -4.32% -3.43% -2.40% -0.92% 0.00%

without educ. -6.44% -6.98% -4.87% -4.14% -3.31% -2.31% -0.87% 0.00%
5 with educ. -4.65% -4.86% -6.05% -3.10% -2.64% -2.13% -0.96% 0.00%

without educ. -3.64% -3.44% -3.21% -2.94% -2.53% -2.08% -0.93% 0.00%

Education has a significant impact in portfolio allocation too, as predicted in preposition 4.

When labor income risk is idiosyncratic, education act as a riskless investment, raising the invest-

ment in risky assets.

 

15 10 5
RRA

3 1.55% 2.60% 5.63%

5 2.35% 3.55% 7.48%

Table IV -  Education Effect (correlation zero)
Expected time until promotion

To illustrate the situation we report the portfolio path over the life cycle for both types of risk

aversion. The red line in Figures 1 and 2 represents the proportion of demand of risky assets in

portfolio when the labor income risk is idiosyncratic, and the blue line represents the same but

when the correlation between labor income risk and stock return is positive. Notice that in both

cases there are trends of decreasing the proportion of investment in risky assets as discussed above,
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and at the earlier stage, the investment in education encourages the agent to increase his position in

risky assets. Also, it is easy to see the hedging effect pushing the portfolio path down.

 

0.58

0.63

0.68
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0.83

35 30 25 20 15 10 5 retired

corr 0 ----- corr 0.25-----

Figure1 : Portfolio path over the life cycle (γ = 3)

 

0.35

0.37

0.39

0.41

0.43
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corr 0 ------ corr 0.25 ------

Figure 2 : Portfolio path over the life cycle (γ = 5)

To show the education effect, the portfolio path is illustrated in both cases of risk aversion

(considering zero correlation), when the investor chooses to educate himself and if not. Notice

that if the choice for education occurs the investment in risky assets goes up, until the promotion

occurs and the spending with education ceases. At the next stage, the allocation becomes the same

as with no education9. If there is a positive correlation between labor income and stock returns, the

9In this special case with labor income being idiosyncratic.
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promotion adds income and risk to the agent that educated himself, making the investor reduce his

risky investment relative to the non-educated investor.
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Figure3 : Portfolio path over the life cycle (γ = 3)
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Figure 4 : Portfolio path over the life cycle (γ = 5)

5 Conclusions

This paper has characterized the optimal asset allocation for an investor who chooses to make an

upgrade in his educational level, looking for better work opportunities in the future.
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We present our main findings as follows. First, we describe how the portfolio allocation changes

in time for an investor that upgrades his or her education. Next, we discuss how this allocation

changes for different levels of education. In particular, when no education upgrade occurs, the

results of Viceira (2001) are recovered.

We then examine the life cycle of an investor who upgraded his or her education. When the

working income is idiosyncratic, i.e., not interfering in the portfolio choice since the working in-

come is not correlated with the return on the risky asset, we may state the following: since the

elasticity of consumption with respect to wealth decreases as the investor retires, the fraction of

wealth invested in the risky asset will be reduced. The intuition for this result is as follows. em-

ployed investors have more income sources than retired investors. Hence, the impact of a variation

of employed investors’ wealth on their consumption level will be lower than in the case of retired

investors, and the latter will have a greater consumption/wealth elasticity than the former. Notice

that investors under an educational upgrading process have an expeceted working period longer

than investors already promoted. Also, such investors expect an increase in their income level in

the future. It is therefore natural that their consumption/wealth elasticity be lower at this educa-

tional stage than in later stages of life (after promotion or at retirement). We then conclude that

investments in the risky asset are proportionally larger during the educational period.

In this particular case where working income is idiosyncratic, we were able to obtain a de-

creasing curve for asset allocation in the risky asset along the different stages of the life cycle. In

fact, our results point out that allocation in risky assets tend to be high in the early stages of life

(investors spending money with education until their period of promotion), decreasing in the late

stages of life (employed and promoted investors, until they retire).

Additionally, the life cycle characterization should be completed with the case where shocks

in the working income are correlated with unexpected returns of the risky asset. In this case, an

investor could change his or her risky asset allocation in order to profit from hedging opportunities,
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regardless of the stage of life except, of course, for retired investors who do not receive any more

working income. If such correlation is positive, investors will lower the demand for risky assets

as compared to the idiosyncratic case, since the working income is already risky. As correlation

increases, it is optimal for employed investors to decrease the fraction of their wealth allocated in

the risky asset. A sufficiently large correlation could lead the hedging term to dominate the optimal

allocation, leading the investor to avoid the risky asset. Notice that, due to positive correlations,

the curve for asset allocation in the risky asset along the different stages of the life cycle may

present an increasing shape, as opposed to the case where working income is idiosyncratic. We

are left to consider the case of negative corelation. It follows from the above considerations that

negative correlations can, at most, reinforce the idiosyncratic decreasing shape of the curve for

asset allocation in the risky asset along the life cycle.

We now turn to the analysis of the optimal allocation on the risky asset during the working

period, comparing the case of educated and non-educated investors. Two factors affect the optimal

asset allocation for an educated investor: first, the expected future gain from promotion; second,

additional hedging capacity, due to a higher income level. The increase in expected income level

makes the consumption/wealth elasticity decrease, contributing to an increase in the proportion

of wealth invested in the risky asset. The additional hedging capacity depends directly on the

covariance between the working income and the return of the risky asset. If this covariance is

positive, education may be seen as a risky investment, reducing the proportion of wealth invested in

the risky asset. This last effect may even dominate the effect of the first factor when the covariance

is too high. If the covariance is negative, the investment in education can be seen as an insurance,

leading investors being educated to increase their share of risky assets, as compared to non-educated

investors.
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A Log-linearization of the budget restriction and of the Euler

equations

A.1 Log-linearization of the budget restriction of the retired agent

The budget restriction of a retired agent corresponds to the equation (23), and may be written as

W r
t+i+1

Wt+i
= (1− Ct+i

Wt+i
)(1 +Rp,t+i+1)

⇒ wr
t+i+1 − wt+i = log [1− exp{ct+i − wt+i}] + rrp,t+i+1.

Linearizing the logarithm of this equation, taking the first-order Taylor expansion around (crt+i−

wt+i) = E(crt+i − wt+i) and (wr
t+i − wt+i) = E(wr

t+i − wt+i), we have

wr
t+i+1 − wt+i+1 ≈ kr − ρrc(ct+i − wt+i) + rrp,t+i+1

where

ρrc =
expE

¡
crt+i − wt+i

¢
1− expE ¡crt+i − wt+i

¢
kr = −(1 + ρrc) log(1 + ρrc) + ρrc log(ρ

r
c)

where ρrc > 0, since Wt − Ct > 0 through the optimal path.
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A.2 Log-linearization of the budget restriction of a promoted working agent

When the working agent has no more expenditures with education, the budget constraint is given

by equation (14), which may be rewritten as

W ep
t+i+1

Tt+i+1
=

Tt+i
Tt+i+1

(1 +
W ep

t+i

Tt+i
− Cep

t+i

Tt+i
)(1 +Rp,t+i+1)

⇒ wep
t+i+1 − τ t+i+1 = log

£
1 + exp{wep

t+i − τ t+i}− exp{cept+i − τ t+i}
¤

−∆τ t+i+1 + repp,t+i+1.

Linearizing the logarithm of this equation, taking the first-order Taylor expansion around (cept+i−

τ t+i) = E(cept+i − τ t+i) and (wep
t+i − τ t+i) = E(wep

t+i − τ t+i) we have

wep
t+i+1 − τ t+i+1 ≈ kep + ρepw (w

ep
t+i − τ t+i)− ρepc (ct+i − τ t+i)−∆τ t+i+1 + repp,t+i+1

where

ρepw =
expE

¡
wep
t+i − τ t+i

¢
1 + expE

¡
wep
t+i − τ t+i

¢− expE ¡cept+i − τ t+i
¢ ,

ρepc =
expE

¡
cept+i − τ t+i

¢
1 + expE

¡
wep
t+i − τ t+i

¢− expE ¡cept+i − τ t+i
¢ ,

kep = −(1− ρesw + ρesc ) log(1− ρesw + ρesc )− ρesw log(ρ
es
w ) + ρesc log(ρ

es
c ).

45



A.3 Log-linearization of the budget restriction of the working agent with

expenditure with education

The budget restriction of the working agent while there are expenditures with education is given by

equation (13), which may be rewritten as

W es
t+i+1

Lt+i+1
=

Lt+i

Lt+i+1
(1 +

W es
t+i

Lt+i
− Xt+i

Lt+i
− Ct+i

Lt+i
)(1 +Rp,t+i+1)

⇒ wes
t+i+1 − lt+i+1 = log

£
1 + exp{wes

t+i − lt+i}− exp{xt+i − lt+i}− exp{cest+i − lt+i}
¤

−∆lt+i+1 + resp,t+i+1.

Linearizing the logarithm of this equation, taking the first-order Taylor expansion around (cest+i−

lt+I) = E(cest+i − lt+i), (w
es
t+i − lt+i) = E(wes

t+i − lt+i) and (xt+i − lt+i) = E(xt+i − lt+i) we have

wes
t+i+1 − lt+i+1 ≈ kes + ρesw (w

es
t+i − lt+i)− ρesx (xt+i − lt+i)− ρesc (c

es
t+i − lt+i)−∆lt+i+1 + resp,t+i

where

ρesw =
expE

¡
wes
t+i − lt+i

¢
1 + expE

¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢ ,
ρesx =

expE (xt+i − lt+i)

1 + expE
¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢ ,
ρesc =

expE
¡
cest+i − lt+i

¢
1 + expE

¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢ ,
kes = −(1− ρesw + ρesx + ρesc ) log(1− ρesw + ρesx + ρesc )− ρesw log(ρ

es
w ) +

+ρesx log(ρ
es
x ) + ρesc log(ρ

es
c ).
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A.4 Log-linearization of the Euler Equation for a working agent

• The Euler equation for the case where the agent is working and spending with education is

1 = Et

"
β

Ã
πe

Ã
πp
µ
Cep
t+i+1

Ces
t+i

¶−γ
+ πs

µ
Ces
t+i+1

Ces
t+i

¶−γ!
+ (1− πe)βr

µ
Cr
t+i+1

Ces
t+i

¶−γ!
(1−Rp,t+i+1)

#
.

Taking the logarithm and exponential in the equation between square brackets we have

1 = πeπpEt+i[exp(log β − γ(cept+i+1 − cest+i) + ri,t+i+1)] +

+πeπsEt+i[exp(log β − γ(cest+i+1 − cest+i) + ri,t+i+1)] +

+(1− πe)Et+i[exp(log β
r − γ(crt+i+1 − cest+i) + ri,t+i+1)]

1 = πeπpEt+i[exp(Xt+i+1)] + πeπsEt+i[exp(Yt+i+1)] + (1− πe)Et+i[exp(Zt+i+1)].

Making a second-order expansion of exp(Xt+i+1), exp(Yt+i+1) and exp(Zt+i+1) around their

respective expected values X = E(exp(Xt+i+1)), Y = E(exp(Yt+i+1)) and Z = E(exp(Zt+i+1))

we may write

1 ≈ πeπpEt+i[exp(X)(1 + (Xt+i+1 −X) +
1

2
(Xt+i+1 −X)2)] +

+πeπsEt+i[exp(Y )(1 + (Yt+i+1 − Y ) + (Yt+i+1 − Y )2)]

+(1− πe)Et+i[exp(Z)(1 + (Zt+i+1 − Z) + (Zt+i+1 − Z)2)]
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1 ≈ πeπp exp(X)(1 +
1

2
vart+i(Xt+i+1)) +

+πeπs exp(Y )(1 +
1

2
vart+i(Yt+i+1)) +

+(1− πe) exp(Z)(1 +
1

2
vart+i(Zt+i+1)).

Finally, a first-order expansion around zero provides

1 ≈ πeπp(1 +X +
1

2
vart+i(Xt+i+1)) +

+πeπs(1 + Y +
1

2
vart+i(Yt+i+1)) +

+(1− πe)(1 + Z +
1

2
vart+i(Zt+i+1))

or,

0 =
X
j=p,s

πeπj(log β − γEt+i(c
ej
t+i+1 − cest+i) +Et+i(ri,t+i+1) +

1

2
vart(ri,t++i1 − γ(cejt+i+1 − cest+i)) +

+(1− πe)(log βr − γEt+i(c
r
t+i+1 − cest+i) +Et+i(ri,t+i+1) +

1

2
vart(ri,t++i1 − γ(crt+i+1 − cest+i)).

• The Euler equation for the case where the agent is promoted is

1 = Et

("
πeβ

µ
Cep
t+i+1

Cep
t+i

¶1−γ
+ (1− πe)βr

µ
Cr
t+i

Cep
t+i

¶−γ#
(1 +Ri,t+i+1)

)
.

Taking the logarithm and exponential in the equation between square brackets we have
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1 = πeEt+i[exp(log β − γ(cept+i+1 − cept+i) + ri,t+i+1)] +

+(1− πe)Et+i[exp(log β
r − γ(crt+i+1 − cept+i) + ri,t+i+1)

1 = πeEt+i[exp(Xt+i+1)] + (1− πe)Et+i[exp(Yt+i+1)].

Making a second-order expansion of exp(Xt+i+1) and exp(Yt+i+1) around their respective ex-

pected values X = E(exp(Xt+i+1)) and Y = E(exp(Yt+i+1)) we may write

1 ≈ πeEt+i[exp(X)(1 + (Xt+i+1 −X) +
1

2
(Xt+i+1 −X)2)] +

+(1− πe)Et+i[exp(Y )(1 + (Yt+i+1 − Y ) + (Yt+i+1 − Y )2)]

1 ≈ πe exp(X)(1 +
1

2
vart+i(Xt+i+1)) + (1− πe) exp(Y )(1 +

1

2
vart+i(Yt+i+1)).

Finally, making a first-order around zero, we obtain

1 ≈ πe(1 +X +
1

2
vart+i(Xt+i+1)) + (1− πe)(1 + Y +

1

2
vart+i(Yt+i+1))

or
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0 = πe(log β − γEt+i(c
ep
t+i+1 − cept+i) +Et+i(ri,t+i+1) +

1

2
vart(ri,t++i1 − γ(cept+i+1 − cept+i)) +

+(1− πe)(log βr − γEt+i(c
r
t+i+1 − cept+i) +Et+i(ri,t+i+1) +

1

2
vart(ri,t++i1 − γ(crt+i+1 − cept+i)).

• The Euler equation for the case where the agent is retired is

1 = Et

"
βr
µ
Cr
t+i+1

Cr
t+i

¶−γ
(1 +Ri,t+i+1)

#
.

Taking the logarithm and exponential in the equation between square brackets we have

1 = Et+i[exp(log β
r − γ(crt+i+1 − crt+i) + ri,t+i+1).

Expanding exp(Xt+i+1) up to second order around its expected value X = E(exp(Xt+i+1)) we

may write

1 ≈ Et+i[exp(X)(1 + (Xt+i+1 −X) +
1

2
(Xt+i+1 −X)2)]

1 ≈ exp(X)(1 + 1
2
vart+i(Xt+i+1)).

Finally, making a first-order expansion around zero,

1 ≈ (1 +X +
1

2
vart+i(Xt+i+1))

or
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0 = log βr − γEt+i(c
r
t+i+1 − crt+i) +Et+i(ri,t+i+1) +

1

2
vart

£
ri,t++i1 − γ(crt+i+1 − crt+i)

¤
.

B The Investor’s Optimal Rules for Each State

B.1 Proof of Proposition 1

To prove Proposition 1 we first guess that optimal policies take the form αr
t+i = αr and crt+i =

br0+b
r
1wt+i. We next show that this guess verifies the log-linear Euler equation 27 and the log budget

constraint 23, provided that αr, br0 and br1 satisfy three equations whose coefficients are functions of

the primitive parameters that define the preference and stochastic structure of the problem.

We first try the following functional form for the optimal rules in the state where the agent is

retired.

crt+i = br0 + br1w
r
t+i

αr
t+i = αr.

With this functional form we obtain the optimal rule for the portfolio in the state where the

agent is retired. First, we subtract equation (27) for i = f from the same equation (27) where i is

the risky asset:

Et+i(rt+i+1)− rf +
1

2
σ2u = γcovt+i(rt+i+1, c

r
t+i+1 − crt+i).

However, we must obtain the value of covt+i(rt+i+1, crt+i+1 − crt+i).
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Equations (28) and (23), together with the trivial equality crt+i+1 − crt+i = br1(w
r
t+i+1 − wr

t+i)

imply that

covt+i(rt+i+1, c
r
t+i+1 − crt+i) = covt+i(rt+i+1, b

r
1(w

r
t+i+1 − wr

t+i))

= covt+i(rt+i+1, b
r
1(k

r − ρrc(ct+i − wt+i) + rrp,t+i+1))

= covt+i(rt+i+1, b
r
1r

r
p,t+i+1)

= br1α
rσ2u.

Therefore,

Et+i(rt+i+1)− rf +
1

2
σ2u = γαbr1σ

2
u

αr =
µ+ σ2u

2

γbr1σ
2
u

.

Deriving the optimal consumption rule for retired agents through equation (27) with i = p, we

obtain the logarithm of the expected consumption growth as

Et+i(c
r
t+i+1 − crt+i) =

1

γ
(log βr +Et+i(rp,t+i+1) +

1

2
vart+i(rp,t+i+1 − γ(crt+i+1 − crt+i)) = Ψr

where
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vart+i(rp,t++i1 − γ(crt+i+1 − crt+i)) = vart+i(rp,t+i+1 − γ(br1(w
r
t+i+1 − wr

t+i))

= vart+i(rp,t+i+1 − γ(br1r
r
p,t+i+1))

= (1− γbr1)
2vart+i(rp,t+i+1).

Using the trivial equality above, together with equation (23) and (28), we have

Et+i(c
r
t+i+1 − crt+i) = br1Et+i(w

r
t+i+1 − wr

t+i) = Ψr

= br1Et+i(r
r
p,t+i+1)− br1ρ

r
cb

r
0 + br1k

r + br1ρ
r
c(1− br1)wt+i

1

γ
(log βr +Et+i(rp,t+i+1) +

1

2
(1− γbr1)

2vart+i(rp,t+i+1)

= br1Et+i(r
r
p,t+i+1)− br1ρ

r
cb

r
0 + br1k

r + br1ρ
r
c(1− br1)wt+i.

Identifying the coefficients on both sides of the equation, we have

br1 = 1

and

br0 = −
µ
1

br1ρ
r
c

¶·µ
1

γ
− br1

¶
E[rp,t+i+1] +

1

γ
log β +

1

2γ
(1− γbr1)

2vart+i(rp,t+i+1)− br1k
r

¸
.
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B.2 Proof of Proposition 2

We first try the following functional form for the optimal rules in the state where the agent is

promoted:

cept+i − τ t+i = bep0 + bep1 (w
ep
t+i − τ t+i)

αep
t+i = αep.

With this functional form we obtain the optimal rule for the portfolio in the state where the

agent is employed. First, we subtract equation (26) for i = f of the same equation (26) where i

denotes the risky asset:

Et+i(rt+i+1)−rf+1
2
σ2u = γ[πecovt+i

¡
rt+i+1, c

ep
t+i+1 − cept+i

¢
+(1−πe)covt+i(rt+i+1, crt+i+1−cept+i)].

As in the retired case, we should obtain those covariances.

By the guessed functional form, the log of the constraint, and a trivial inequality we have:
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covt+i(rt+i+1, c
ep
t+i+1 − cept+i) = covt+i(rt+i+1, (c

ep
t+i+1 − τ t+i+1)−

−(cept+i − τ t+i) + (τ t+i+1 − τ t+i))

= covt+i(rt+i+1, b
ep
1 (w

ep
t+i+1 − τ t+i+1) +∆τ t+i+1)

= covt+i(rt+i+1, b
ep
1 (−∆τ t+i+1 + rp,t+i+1) +∆τ t+i+1)

= covt+i(rt+i+1, (1− bep1 )∆τ t+i+1 + bep1 αrt+i+1)

= (1− bep1 )zσξu + αbep1 σ
2
u

and

covt+i(rt+i+1, c
r
t+i+1 − cept+i) = covt+i(rt+i+1, (c

r
t+i+1 − τ t+i+1)−

−(ceτt+i − τ t+i) + (τ t+i+1 − τ t+i))

= covt+i(rt+i+1, b
r
1(w

r
t+i+1 − τ t+i+1) +∆τ t+i+1)

= covt+i(rt+i+1, b
r
1(−∆τ t+i+1 + rp,t+i+1) +∆τ t+i+1)

= covt+i(rt+i+1, (1− br1)c∆τ t+i+1 + br1αrt+i+1)

= (1− br1)zσξu + αbr1σ
2
u

= αbr1σ
2
u.

Therefore:
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Et+i(rt+i+1)− rf +
1

2
σ2u = γ[πecovt+i(rt+i+1, c

ep
t+i+1 − cept+i) + (1− πe)covt+i(rt+i+1, c

r
t+i+1 − cept+i)]

= γ[πe((1− bep)zσξu + αbep1 σ
2
u) + (1− πe)(αbr1σ

2
u)]

= αγbc1σ
2
u + γπe(1− bep1 )σξu

αep =
µ+ σ2u

2

γbc1σ
2
u

− πe(1− bep1 )zσξu
bc1σ

2
u

αep =
µ+ σ2u

2

γbc1σ
2
u

− πe(1− bep1 )σξu
bc1σ

2
u

− πe(1− bep1 )(z − 1)σξu
bc1σ

2
u

.

Deriving the optimal consumption rule for promoted investor, by equation (26) with i = p we

get the logarithm of expected consumption growth:

πeEt+i(c
ep
t+i+1 − cept+i) + (1− πe)Et+i(c

r
t+i+1 − cept+i) =

1

γ
[πe(log β +Et+i(rp,t+i+1)

+
1

2
vart+i(rp,t++i1 − γ(cept+i+1 − cept+i))

+(1− πe)(log βr +Et+i(rp,t+i+1)

+
1

2
vart+i(rp,t++i1 − γ(crt+i+1 − cept+i))]

= Ψep

where

V ep = πevart+i(rp,t++i1 − γ(cept+i+1 − cept+i)) + (1− πe)vart+i(rp,t++i1 − γ(crt+i+1 − cept+i))
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vart+i(rp,t++i1 − γ(cept+i+1 − cept+i)) = vart+i(rp,t++i1 − γ((cept+i+1 − τ t+i) +∆τ t+i+1))

= vart+i(rp,t++i1 − γ(bep1 (w
ep
t+i+1 − τ t+i) +∆τ t+i+1))

vart+i(rp,t++i1 − γ(cept+i+1 − cept+i)) = vart+i(rp,t++i1 − γ(bep1 (rp,t+i+1 −∆τ t+i+1) +∆τ t+i+1))

= vart+i((1− γbep1 )rp,t+i+1 − γ(1− bep1 )∆τ t+i+1)

= (1− γbep1 )
2vart+i(rp,t+i+1) + γ2z2(1− bep1 )

2vart+i(∆lt+i+1)−

−2γz(1− γbep1 )(1− bep1 )covt+i(rp,t+i+1,∆lt+i+1)

and

vart+i(rp,t++i1 − γ(crt+i+1 − cept+i)) = vart+i(rp,t++i1 − γ((crt+i+1 − τ t+i) +∆τ t+i+1)

= vart+i(rp,t++i1 − γ(br1(w
r
t+i+1 − τ t+i) +∆τ t+i+1)

vart+i(rp,t++i1 − γ(crt+i+1 − cept+i)) = vart+i(rp,t++i1 − γ(br1(rp,t+i+1 −∆τ t+i+1) +∆τ t+i+1)

= vart+i((1− γbr1)rp,t+i+1 − γ(1− br1)∆τ t+i+1)

= (1− γbr1)
2vart+i(rp,t+i+1).

Then:

V ep = πe(1− γbep1 )
2vart+i(rp,t+i+1) + (1− πe)(1− γbr1)

2vart+i(rp,t+i+1) +

πeγ2z2(1− bep1 )
2vart+i(∆lt+i+1)− 2γzπe(1− γbep1 )(1− bep1 )covt+i(rp,t+i+1,∆lt+i+1).

Using the equality above, together with equation (22) and (30) we have
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πeEt+i(c
ep
t+i+1 − cept+i) + (1− πe)Et+i(c

r
t+i+1 − cept+i) = πeEt+i(c

ep
t+i+1 − τ t+i+1) + (1− πe)Et+i(c

r
t+i+1 − τ

= (cept+i − τ t+i)− zg +Ψep

πeEt+i(b
ep
0 + bep1 (w

ep
t+i+1 − τ t+i+1)) + (1− πe)Et+i(b

r
0 + br1(w

r
t+i+1 − τ t+i+1))

= (cept+i − τ t+i)− zg +Ψep

πeEt+i(b
ep
0 + bep1 (w

ep
t+i+1 − τ t+i+1)) + (1− πe)Et+i(b

r
0 + br1(w

r
t+i+1 − τ t+i+1))

= bep0 + bep1 (w
ep
t+i − τ t+i)− zg +Ψep

bc0 + bc1Et+i(w
ep
t+i+1 − τ t+i+1) = bep0 + bep1 (w

ep
t+i − τ t+i)− zg +Ψep

bc1(ρ
ep
w − ρepc b

ep
1 )(wt+i − τ t+i) + bc0 + bc1(k

ep − ρepc b
ep
0 − zg +Et+i(rp,t+i+1))

= bep0 + bep1 (w
ep
t+i − τ t+i)− zg +Ψep.

Identifying the coefficients on both sides of the equation yields

bc1(ρ
ep
w − ρepc b

ep
1 ) = bep1
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bc0 + bc1(k
ep − ρepc b

ep
0 − zg +Et+i(rp,t+i+1)) = bep0 − zg +Ψep.

There are two equations and two unknowns. From the first equation we obtain directly

πeρepc (b
ep
1 )

2 + (1− πeρepw + (1− πe)br1ρ
ep
c )b

ep
1 − (1− πe)br1ρ

ep
w = 0.

The expression for bep0 is given by:

bep0 = − 1

[(1− πe) + ρepc bc1]
[

µ
1

γ
− bc1

¶
Et+i(rp,t+i+1) +

1

γ
(πe log β + (1− πe) log βr)

+
1

2γ
V ep + πe(bep1 − 1)zg − bc1k

ep − (1− πe)br0].

Checking if 1 > bep1 > 0 :

(bep1 )
2 +

(1− πeρepw + (1− πe)br1ρ
ep
c )

πeρepc
bep1 −

(1− πe)br1ρ
ep
w

πeρepc
= 0.

The discriminant of this quadratic equation is

µ
(1− πeρepw + (1− πe)br1ρ

ep
c )

πeρepc

¶2
+ 4

µ
(1− πe)br1ρ

ep
w

πeρepc

¶
≥ 0

since the first term is quadratic and the second term has only positive coefficients. Therefore, the

roots are real.

By the last term of the quadratic equation, because it is negative we know that there exists

one positive root and another negative. Discarding the negative root because it would imply a

consumption level decreasing in the wealth for all levels of working income, making the agent

better off with less wealth, so bep1 > 0.
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To prove that bep1 < 1, we will show that bep1 ≥ 1 is inconsistent with the fact of investor saving

(Wt+i + Lt+i + Tt+i − Ct+i) > 0 during the optimal path. If bep1 ≥ 1 then:

bep1 =
−[1− πeρepw + (1− πe)br1ρ

ep
c ] +

p
(1− πeρepw + (1− πe)br1ρ

ep
c )2 + 4πeρ

ep
c (1− πe)br1ρ

ep
w

2πeρepc
≥ 1.

Taking the square of both sides and solving we have

br1(ρ
ep
w − ρepc )− πebr1(ρ

ep
w − ρepc ) + πe(ρepw − ρepc ) ≥ 1.

Because we know that br1 = 1,

(ρepw − ρepc ) ≥ 1

expE
¡
wep
t+i − lt+i

¢− expE ¡cept+i − lt+i
¢ ≥ 1 + expE ¡wep

t+i − lt+i
¢− expE ¡cept+i − lt+i

¢
,

the left hand side of this inequality equals 0 and the right hand side equals 1, leading to a contra-

diction. Therefore, we must have bep1 < 1.

B.3 Proof of Proposition 4

We first try the following functional form for the optimal rules in the state where the agent is

employed spending in education:

cest+i − lt+i = bes0 + bes1 (w
es
t+i − lt+i)
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xt+i − lt+i = bes2 + bes3 (w
es
t+i − lt+i)

αes
t+i = αes.

With this functional form we obtain the optimal rule for the portfolio in the state where the

agent is employed. First, we subtract equation (24) for i = f of the same equation (24) where i

denotes the risky asset:

Et+i(rt+i+1)− rf +
1

2
σ2u = γ[πe(πpcovt+i(rt+i+1, c

ep
t+i+1 − cest+i) + πscovt+i(rt+i+1, c

es
t+i+1 − cest+i))

+(1− πe)covt+i(rt+i+1, c
r
t+i+1 − cest+i)].

As in the cases above, we should obtain those covariances.

By the guessed functional form, by the log of the constraint, and by trivial inequality we have:

covt+i(rt+i+1, c
es
t+i+1 − cest+i) = covt+i(rt+i+1, (c

es
t+i+1 − lt+i+1)−

−(cest+i − lt+i) + (lt+i+1 − lt+i))

= covt+i(rt+i+1, b
es
1 (w

es
t+i+1 − lt+i+1) +∆lt+i+1)

= covt+i(rt+i+1, b
es
1 (−∆lt+i+1 + rp,t+i+1) +∆lt+i+1)

= covt+i(rt+i+1, (1− bes1 )∆lt+i+1 + bes1 αrt+i+1)

= (1− bes1 )σξu + αbes1 σ
2
u
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covt+i(rt+i+1, c
ep
t+i+1 − cest+i) = covt+i(rt+i+1, (c

ep
t+i+1 − τ t+i+1)−

−(cest+i − τ t+i) + (τ t+i+1 − τ t+i))

= covt+i(rt+i+1, b
ep
1 (w

ep
t+i+1 − τ t+i+1) +∆τ t+i+1)

= covt+i(rt+i+1, b
ep
1 (−∆τ t+i+1 + rp,t+i+1) +∆τ t+i+1)

= covt+i(rt+i+1, (1− bep1 )z∆lt+i+1 + bep1 αrt+i+1)

= z(1− bep1 )σξu + αbep1 σ
2
u

covt+i(rt+i+1, c
r
t+i+1 − cest+i) = covt+i(rt+i+1, (c

r
t+i+1 − lt+i+1)−

−(crt+i − lt+i) + (lt+i+1 − lt+i))

= covt+i(rt+i+1, b
r
1(w

r
t+i+1 − lt+i+1) +∆lt+i+1)

= covt+i(rt+i+1, b
r
1(−∆lt+i+1 + rp,t+i+1) +∆lt+i+1)

= covt+i(rt+i+1, (1− br1)∆lt+i+1 + bel1 αrt+i+1)

= (1− br1)cσξu + αbr1σ
2
u

= αbr1σ
2
u.

Then

Et+i(rt+i+1)− rf +
1

2
σ2u = γ[πe(πp((1− bep1 )zσξu + αbep1 σ

2
u)

+πs((1− bes1 )σξu + αbes1 σ
2
u)) + (1− πe)αbr1σ

2
u].
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Rearranging, we have

αes =
µ+ σ2u

2

γbcc1 σ
2
u

− πeπs(1− bes1 )σξu
bcc1 σ

2
u

− πeπp(1− bep1 )zσξu
bcc1 σ

2
u

where bcc1 = πe(πpbep1 + πsbes1 ) + (1− πe)br1.

Deriving the optimal consumption rule for employed investor who educates himself, by equa-

tion (24) with i = p we obtain the logarithm of the expected consumption growth:

0 =
X
j=l,s

πeπj(log β − γEt+i(c
ej
t+i+1 − cest+i) +Et+i(rp,t+i+1) +

+
1

2
vart+i(rp,t+i+1 − γ(cejt+i+1 − cest+i))) + (1− πe)(log βr − γEt+i(c

r
t+i+1 − cest+i) +

+Et+i(rp,t+i+1) +
1

2
vart+i(rp,t+i+1 − γ(cejt+i+1 − cest+i)))

πeπpEt+i(c
ep
t+i+1 − cest+i) + πeπsEt+i(c

es
t+i+1 − cest+i) + (1− πe)Et+i(c

r
t+i+1 − cest+i)

=
1

γ
(Et+i(rp,t+i+1) +

1

2
V es + πe log β + (1− πe) log βr) = Ψes.

Using the trivial inequalities we have

πeπpEt+i(c
ep
t+i+1 − cest+i) + πeπsEt+i(c

es
t+i+1 − cest+i) + (1− πe)Et+i(c

r
t+i+1 − cest+i) (35)

= πeπpEt+i(c
ep
t+i+1 − lt+i+1) + πeπsEt+i(c

es
t+i+1 − lt+i+1) + (1− πe)Et+i(c

r
t+i+1 − lt+i+1)

= (cept+i − lt+i) +Ψes − g.
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The covariances are given by

V es = πeπpvart+i(rp,t+i+1 − γ(cept+i+1 − cest+i)) + πeπsvart+i(rp,t+i+1 − γ(cest+i+1 − cest+i)) +

+(1− πe)vart+i(rp,t+i+1 − γ(crt+i+1 − cest+i))

where

vart+i(rp,t++i1 − γ(cest+i+1 − cest+i)) = vart+i(rp,t++i1 − γ((cest+i+1 − lt+i) +∆lt+i+1)

= vart+i(rp,t++i1 − γ(bes1 (w
es
t+i+1 − lt+i) +∆lt+i+1)

vart+i(rp,t++i1 − γ(cest+i+1 − cest+i)) = vart+i(rp,t++i1 − γ(bes1 (rp,t+i+1 −∆lt+i+1) +∆lt+i+1)

= vart+i((1− γbes1 )rp,t+i+1 − γ(1− bes1 )∆lt+i+1)

= (1− γbes1 )
2vart+i(rp,t+i+1) + γ2(1− bes1 )

2vart+i(∆lt+i+1)−

−2γ(1− γbes1 )(1− bes1 )covt+i(rp,t+i+1,∆lt+i+1)

vart+i(rp,t++i1 − γ(cept+i+1 − cest+i)) = vart+i(rp,t++i1 − γ((cept+i+1 − τ t+i) +∆τ t+i+1)

= vart+i(rp,t++i1 − γ(bep1 (w
ep
t+i+1 − τ t+i) +∆τ t+i+1)

vart+i(rp,t++i1 − γ(cept+i+1 − cest+i)) = vart+i(rp,t++i1 − γ(bep1 (rp,t+i+1 −∆τ t+i+1) +∆τ t+i+1)

= vart+i((1− γbep1 )rp,t+i+1 − γ(1− bep1 )∆τ t+i+1)

= (1− γbep1 )
2vart+i(rp,t+i+1) + γ2z2(1− bep1 )

2vart+i(∆lt+i+1)−

−2γz(1− γbep1 )(1− bep1 )covt+i(rp,t+i+1,∆lt+i+1)
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vart+i(rp,t++i1 − γ(crt+i+1 − cest+i)) = vart+i(rp,t++i1 − γ((crt+i+1 − lt+i) +∆lt+i+1)

= vart+i(rp,t++i1 − γ(br1(w
r
t+i+1 − lt+i) +∆lt+i+1)

vart+i(rp,t++i1 − γ(crt+i+1 − cest+i)) = vart+i(rp,t++i1 − γ(br1(rp,t+i+1 −∆lt+i+1) +∆lt+i+1)

= vart+i((1− γbr1)rp,t+i+1 − γ(1− br1)∆lt+i+1)

= (1− γbr1)
2vart+i(rp,t+i+1) + γ2(1− br1)

2vart+i(∆lt+i+1)−

−2γ(1− γbr1)(1− br1)covt+i(rp,t+i+1,∆lt+i+1).

Substituting the equations of consumption (30), (32), and (28) in the equation (35) we have

πeπpEt+i(b
ep
0 + bep1 (wt+i+1 − lt+i+1) + (1− bep1 )(z − 1)lt+i+1) +

+πeπsEt+i(b
es
0 + bes1 (wt+i+1 − lt+i+)) + (1− πe)Et+i(b

r
0 + br1(wt+i+1 − lt+i+1))

= bes0 + bes1 (wt+i+1 − lt+i+1) +Ψes − g

bcck = πe(πpbepk + πsbesk ) + (1− πe)brk, for all k=0,1, then:

bcc0 + bcc1 (wt+i+1 − lt+i+1) + πeπp(1− bep1 )(τ t+i+1 − lt+i+1) +−
πeπp(1− bep1 )(lt+i − lt+i)

= bes0 + bes1 (wt+i+1 − lt+i+1) +Ψes − g
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bcc0 + bcc1 (wt+i+1 − lt+i+1) + πeπp[(1− bep1 )(τ t+i+1 − lt+i)− (1− bep1 )(lt+i+1 − lt+i)]

= bcc0 + bcc1 (wt+i+1 − lt+i+1) + πeπp(1− bep1 )(z − 1)g

= bes0 + bes1 (wt+i+1 − lt+i+1) +Ψes − g

we assume that τ t+i = lt+i.

bcc1 (ρ
es
w − ρesx b

es
3 − ρesc b

es
1 )(w

es
t+i − lt+i) + bcc0 + bcc1 (k

es − ρesx b
es
2 − ρesc b

es
0 − g +Et+i(rp,t+i+1)) +

+πeπp(1− bep1 )(z − 1)g

= bes0 + bes1 (w
es
t+i − lt+i) +Ψes − g.

Identifying the coefficients bes0 , bes1 by equations

bcc1 (ρ
es
w − ρesx b

es
3 − ρesc b

es
1 ) = bes1

bcc0 + bcc1 (k
es − ρesx b

es
2 − ρesc b

es
0 − g +Et+i(rp,t+i+1)) + πeπp(1− bep1 )(z − 1)g

= Ψes − g + bes0 .

Solving recursively, because the first equation depends only on bes1 , and the second on bep0 , b
ep
1 , and

manipulating the first equation we find the following quadratic form:
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0 = πeπsρesc (b
es
1 )

2 + (1− πeπs(ρesw − ρesx b
es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )b

es
1

−bep1 πeπp(ρesw − ρesx b
es
3 )− (1− πe)br1(ρ

es
w − ρesx b

es
3 )

We have this quadratic form for bes1 , a function of only the parameters and probabilities.

The expression for bes0 is given by

bes0 = − 1

[(1− πeπs) + bcc1 ρ
es
c ]
[

µ
1

γ
− bcc1

¶
Et+i(rp,t+i+1) +

1

γ
(πe log β + (1− πe) log βr) +

1

2γ
V es − bcc1 (k

es − bes2 ρ
es
x ) + g(bcc1 − 1)− (πeπpbep0 + (1− πe)br0))− πeπp(1− bep1 )(z − 1)g].

Let us now characterize the roots of the quadratic equation of bes1 .

0 = (bes1 )
2 +

(1− πeπs(ρepw − ρesx b
es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )

πeπsρesc
bes1 −

−b
ep
1 π

eπp(ρesw − ρesx b
es
3 ) + (1− πe)br1(ρ

es
w − ρesx b

es
3 )

πeπsρesc
.

The discriminant of this quadratic equation is

0 ≤
µ
(1− πeπs(ρepw − ρesx b

es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )

πeπsρesc

¶2
+

+4

µ
bep1 π

eπp(ρesw − ρesx b
es
3 ) + (1− πe)br1(ρ

es
w − ρesx b

es
3 )

πeπsρesc

¶

because the first term is quadratic and the second term have only positive coefficients. bep1 , br1, ρesw , ρesx , ρesc >

0, 0 < πe, πp, πs < 1. Moreover ρesw > ρesx b
es
3 , because the spending with education cannot be
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greater than the financial wealth, since the agent is a saver in this phase of life. Let us assume first

that 0 < bes3 < 1. Then we will show that this is consistent with the result 1 > bes1 > 0.Therefore,

the roots are real.

By the last term of the quadratic equation, because it is negative, we know that there exists one

positive root and another negative. We do not consider the negative root because it would imply

that the optimal level of consumption is decreasing in the wealth for all levels of working income,

and the agent would then be better off with less wealth, so bes1 > 0.

To prove that bes1 < 1, we will show that bes1 ≥ 1 is not consistent with the fact of the investor

having saved (Wt+i + Lt+i +Xt+i − Ct+i) > 0 during his optimal path. If bes1 ≥ 1 then

1 ≤ bes1 =
−(1− πeπs(ρepw − ρesx b

es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )

2πeπsρesc
+vuuuuut (1− πeπs(ρepw − ρesx b

es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )

2+

+4πeπsρesc (b
ep
1 π

eπp(ρesw − ρesx b
es
3 ) + (1− πe)br1(ρ

es
w − ρesx b

es
3 ))

2πeπsρesc

2πeπsρesc + (1− πeπs(ρepw − ρesx b
es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )

≤

vuuuuut (1− πeπs(ρepw − ρesx b
es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )

2+

+4πeπsρesc (b
ep
1 π

eπp(ρesw − ρesx b
es
3 ) + (1− πe)br1(ρ

es
w − ρesx b

es
3 ))
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(2πeπsρesc + (1− πeπs(ρepw − ρesx b
es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c ))

2

≤ (1− πeπs(ρepw − ρesx b
es
3 ) + πeπpbep1 ρ

es
c +

+(1− πe)br1ρ
es
c )

2 + 4πeπsρesc (b
ep
1 π

eπp(ρesw − ρesx b
es
3 ) + (1− πe)br1(ρ

es
w − ρesx b

es
3 )).

Taking the square of both sides and solving, we have

4πeπsρesc (b
ep
1 π

eπp(ρesw − ρesx b
es
3 ) + (1− πe)br1(ρ

es
w − ρesx b

es
3 ))

≥ 4πe
2

πs
2

ρes
2

c + 4πeπsρesc (1− πeπs(ρepw − ρesx b
es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )

(bep1 π
eπp(ρesw − ρesx b

es
3 ) + (1− πe)br1(ρ

es
w − ρesx b

es
3 ))

≥ πeπsρesc + (1− πeπs(ρepw − ρesx b
es
3 ) + πeπpbep1 ρ

es
c + (1− πe)br1ρ

es
c )

1− πeπs(ρesw − ρesc − ρesx b
es
3 ) ≤ bep1 π

eπp(ρesw − ρesc − ρesx b
es
3 ) + (1− πe)(ρesw − ρesc − ρesx b

es
3 )

1 ≤ (ρesw − ρesc − ρesx b
es
3 )(π

e(πs + bep1 π
p) + (1− πe))

where 1 + ρesw − ρesx − ρesc > 0 ⇒ 1 > ρesx + ρesc − ρesw > bes3 ρ
es
x + ρesc − ρesw , with 0 <

bep1 , b
es
3 , b

r
1, π

e, πs, πl < 1.

For this inequality to be valid it would be necessary that
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(ρesw − ρesc − ρesx ) ≥ (ρesw − ρesc − ρesx b
es
3 )(1) ≥ (ρesw − ρesc − ρesx b

es
3 )(π

e(πs + bep1 π
p) + (1− πe)) ≥ 1

because 0 < bep1 , b
es
3 < 1, then

ρesw − ρesc − ρesx ≥ 1.

But this then implies that

expE
¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢
≥ 1 + expE

¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢
,

the left hand side of this inequality equals 0, and the right hand side equals 1, leading to a contra-

diction.

Therefore, if even ρesw −ρesc −ρesx < 1, we must have (ρesw −ρesc −ρesx b
es
3 )(π

e(πs+ bep1 π
p)+ (1−

πe)) < 1, because (ρesw − ρesc − ρesx ) ≥ (ρesw − ρesc − ρesx b
es
3 )(π

e(πs + bep1 π
p) + (1− πe)); which is a

contradiction, so bes1 < 1⇒ 0 < bes1 < 1.

Deriving the optimal consumption rule for the spending with education upgrade, by equation

(25) with i = p we have

0 = πeπsEt+i{log β − γ(cest+i+1 − xt+i) + rp,t+i+1 +
1

2
vart+i(rp,t++i1 − γ(cest+i+1 − xt+i))}
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0 = Et+i{log β − γ(cest+i+1 − xt+i) + rp,t+i+1 +
1

2
vart+i(rp,t++i1 − γ(cest+i+1 − xt+i))}

Et+i(c
es
t+i+1 − xt+i) =

1

γ
(log β +Et+i(rp,t+i+1) +

1

2
vart+i(rp,t++i1 − γ(cest+i+1 − xt+i))

= Ψes
x

where the variance is:

vart+i(rp,t++i1 − γ(cest+i+1 − xt+i)) = vart+i(rp,t++i1 − γ(bes1 (w
es
t+i+1 − lt+i+1) +∆lt+i+1))

= vart+i(rp,t++i1 − γ(bes1 (−∆lt+i+1 + rp,t+i+1) +∆lt+i+1))

= vart+i((1− γbes1 )rp,t+i+1 − γ(1− bes1 )∆lt+i+1)

= (1− γbes1 )
2vart+i(rp,t+i+1) + γ2(1− bes1 )

2vart+i(∆lt+i+1)−

−2γ(1− bes1 )(1− γbes1 )covt+i(rp,t+i+1,∆lt+i+1).

Using the guess of the spent and consumption equation, the trivial inequality, and the logarithm of

constraint equation we have

bes0 + bes1 (w
es
t+i+1 − lt+i+1) = (xt+i − lt+i)− g +Ψes

x
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bes0 + bes1 (k
es + ρesw (wt+i − lt+i)− ρesx (b

es
2 + bes3 (wt+i − lt+i))−

−ρesc (bes0 + bes1 (wt+i − lt+i)− g +Et+i(rp,t+i+1))

= bes2 + bes3 (wt+i − lt+i)− g +Ψes
x

bes1 (ρ
es
w − ρesx b

es
3 − ρesc b

es
1 )(wt+i − lt+i) + bes0 + bes1 (k

es − ρesx b
es
2 − ρesc b

es
0 − g +Et+i(rp,t+i+1))

= bes3 (wt+i − lt+i) + bes2 − g +Ψes
x .

Identifying the coefficients bes2 , bes3 by equations:

bes1 (ρ
es
w − ρesx b

es
3 − ρesc b

es
1 ) = bes3

bes0 + bes1 (k
es − ρesx b

es
2 − ρesc b

es
0 − g +E(rp,t+i+1)) = bes2 − g +Ψes

x .

Solving recursively, because the first equation depends only on bes3 , and the second on bep2 , b
ep
3 .

bes3 (1 + bes1 ρ
es
x ) = bes1 (ρ

es
w − ρesc b

es
1 )

bes3 =
bes1 (ρ

es
w − ρesc b

es
1 )

(1 + bes1 ρ
es
x )

> 0.

Now we shall show by contradiction that bes3 < 1.

Assume that bes3 ≥ 1. In that case,
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bes1 (ρ
es
w − ρesc b

es
1 ) ≥ (1 + bes1 ρ

es
x )

(ρesw − ρesx − ρesc b
es
1 ) ≥ bes1 (ρ

es
w − ρesx − ρesc b

es
1 ) ≥ 1

because 0 < bes1 < 1, but

expE
¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢
bes1

1 + expE
¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢ ≥ 1
reads

expE
¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢
bes1

≥ 1 + expE
¡
wes
t+i − lt+i

¢− expE(xt+i − lt+i)− expE
¡
cest+i − lt+i

¢
.

For bes1 ≈ 1, the left hand side of this inequality equals 0 and the right hand side equals 1, leading

to a contradiction. For bes1 ≈ 0, we have

expE
¡
cest+i − lt+i

¢ ≥ 1.
This is only possible if cest+i ≥ lt+i, meaning that the investor is spending his savings in this phase

of life, which is not compatible with the fact that he saved (Wt+i+Lt+i−Xt+i−Ct+i) > 0 during

the optimal path. Hence, it follows that 0 < bes3 < 1.

Finding the value of the coefficient bes2 :

bes0 + bes1 (k
es − ρesx b

es
2 − ρesc b

es
0 − g +Et+i(rp,t+i+1)) = bes2 − g +Ψes

x
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bes2 = − 1

(1 + bes1 ρ
es
x )
[

µ
1

γ
− bes1

¶
Et+i(rp,t+i+1) + log β − g(1− bes1 ) +

+
1

2
vart+i(rp,t++i1 − γ(cest+i+1 − xt+i))− bes0 + bes1 (k

es − ρesc b
es
0 )].
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