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Fluctuations in the Curie-Weiss Version of the Ising Model 
with Random Field. 

J. M. G. AMARO DE MATOS(*) and J. FERNANDO PEREZ(**) 
Instituto de Fisica, Universidade de Sdo Paulo 
C .  P. 20516, 01498 Sdo Paulo, SP, Brazil 

(received 24 August 1987; accepted in final form 18 November 1987) 

PACS. 75.40D. - Ising and other classical spin models. 

Abstract. - For the Curie-Weiss version of the king Model with random field it is shown that 
the fluctuations have: i) a Gaussian distribution with random (i. e. sample dependent) mean, if 
the system is away from criticality or at first-order critical points; ii) a sample-independent non- 
Gaussian distribution at second- or higher-order critical points. 

1. Introduction. 

In a beautiful series of papers [l-31, Ellis and Newman discussed the statistics of the large 
spin-block variables in classical Curie-Weiss models of spin systems and showed their 
fluctuations to be of nontrivial nature at  second-order critical temperatures. It is, therefore, 
natural to investigate how the behaviour of these variables is affected by the presence of 
randomness. Of special interest is the so-called Ising model with random magnetic field 
whose thermodynamics and phase diagram in its Curie-Weiss version have already been 
computed by Salinas and Wreszinsky [4]. 

In this paper we revisit the model with the purpose of discussing the probability 
distribution of its fluctuation variables in the spirit of Ellis and Newman's ideas. In 
particular, we are interested in questions concerning the self-averaging properties [5 ] .  Our 
findings are as follows. 

Away from criticality, the fluctuations are non-self-averaging. Their probability 
distribution is a Gaussian with random mean, i . e .  not determined with probability one in the 
space of the hi's. Actually the mean itself is a Gaussian random variable. 

At criticality two different kinds of phenomena may occur. If there is a first-order phase 
transition, fluctuations will remain non-self-averaging, just as above. If not, they will 
become deterministic and no longer Gaussian. An eventual tricritical point would fall in this 
last category. 

A suggestive physical picture may be drawn from these results, considering the non-self- 

(*) Financial support by FAPESP, Grant 8412635-9. 
(**I Partial financial support by CNPq, Grant 303795-77FA. 



278 EUROPHYSICS LETTERS 

averaging effect due to the presence of the random fields. At a second-order phase transition 
the correlations between spins, typical of criticality, are strong enough to suppress the 
effect of field's fluctuations. 

We describe here the main ideas leading to our results. Full mathematical details and 
applications to  other Curie-Weiss random spin models, like Van Hemmen's spin-glass 
model [6], will be presented elsewhere [7]. 

The paper is organized as follows. In the next section we present the model and briefly 
review its thermodynamics within a slightly different method than that used by Salinas and 
Wreszinski. In the third section we present the analysis of the fluctuations and obtain our 
results. 

2. The model and its thermodynamics. 

The model is described by the following Hamiltonian: 

where o, = k 1 are spin variables and the fields h, are independent, identically distributed 
random variables with distribution dv (h,), that we denote by hi - dv (hi). 

Denoting by {U} all the possible configurations of spins, its partition function may be 
written 

Z , = 2 e x p [ - H , ] = ( ~ ) 1 ' z 2 " j d x e x p [ - n ~ ]  ( 4  * = 1  fI exp[In c o s h ~ ( x + G h J ] =  

= 2" ($$"'/ dx exp [- n G, (XI]. ( 2 . 2 )  

Here we have used the identity 

exp [a2/2]  = - 1 exp [- x2/2  + a x ]  dx , 
fi 

in the first equality with 

a = f l 2 g i ,  
i = l  

and 

G, (x) = ." - 2 Incosh ~ ( x  + G h J  + G (x) = $ - lncosh ~ ( x  + G h )  2 n n-r= 

by the law of large numbers, where 

In cosh G ( x  + G h )  = 1 dv (h) In cosh G ( x  + G h )  . 
1 Following Laplace's asymptotic method, the free energyf= lim - -1n2, will be given 

ni3 ?I-m 

by 

f= G (x) = G (x*). 
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An important point should be noticed. If one computes 2, with a fixed configuration of 
fields {hi}, one obtains a free energy independent of the choice of {hi}, since the 
thermodynamic limit itself provides an average on dv (h). This is the self-averaging property 
of the free energy. 
Denoting by G(k) (x )  and G t ) ( x )  the k-th derivatives of G (x) and G,(x), respectively, one may 
write for the first derivatives of G ( x ) ,  

1 The derivatives of G, will be given by similar expressions, just replacing /dv(h) by --C 
and h by hi. 1 

Clearly G(')(x*) = 0 and for any even distribution dv (h) all the odd derivatives of G (x) 
vanish at x = 0. So, in this case x* = 0 will be a (at least local) minimum as long as G(') (0) > 0. 
For p = 0 one can see that it is the only global minimum. As ,8 increases, if there is no first- 
order phase transition, the condition G(') (0) = 0 defines a second-order phase transition at 
p = p c  given by (2.3): 

We will consider two types of distribution: 

Type I: even, absolutely continuous with density p (h) decreasing in [O, al .  
Type 11: density of the form p ( h )  = Co6(h) + Ci[6(h-hi)+6(h+ hi)] with C i 2 0  for all i. 

It may be shown [4] that for dv of type I there will be no first-order phase transition and 
neither for type I1 if CO - (1/3) C Ci 2 0. If, on the other hand, one takes 

1 

one finds a phase diagram as depicted in fig. 1 [4], where (Ht  , Tt) is a tricritical point. 

Fig. 1. 

3. Fluctuations. 

The study of fluctuations should be regarded as a finite-size statistical correction to the 
evaluation of the equilibrium magnetization. We are then interested in the asymptotic 
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distribution of the random variable z j ,  defined as 

with y > 0 and to be chosen in such a way that y = lim yn  has a nontrivial probability 
distribution. 

n-= 

Moreover, if yn - Pn (x) dx, then PZs is given 181 by 

P2n  = jdx’Pn(x’) P,(u-’ x - X’)gn(x,  x’, U )  

where g, (x, x‘, a )  expresses the interactions between the and a is some constant related to 
y. Then P (x) = lim Pn(x )  will be stable [9] in the sense that it satisfies the fixed-point 
equation 

P (x) = lim 1 dx’ P (x’) P, (a- x - x’) g,  (x, x’, a)  . 

n-m 

n-= 

One should take very carefully into account that we are considering y ,  as a block-spin 
variable of the size of the system with n (finite) fixed. This crucial point is in the heart of the 
whole approach, for had one considered a block-spin variable of f ixed size (say N )  in the 
thermodynamic limit (n += CO), its statistic would have been trivial (Gaussian distribution), 
since the spin variables are asymptotically independent. All nontriviality of our results to be 
exposed hereafter comes from this very fact. Here, the role of the function G ( x )  becomes 
clearer. Its origin is an integral representation for Z,, where the spins are uncoupled 
already for finite n. The cost of such an operation is the introduction of the real, continuous 
variable x in (2.2). It appears as an extra field in a modified Hamiltonian of independent 
spins, with a Gaussian weight in the measure under integration. In fact, as one easily 
sees [2], the function exp [- nG (x)] admits a decomposition as a convolution of a Gaussian 
distribution with that of yn: 

where W is a random variable independent of yn and W -N(O, l), with N(O,l> being a 
Gaussian distribution with mean zero and variance 1. This fact allows one to obtain the 
asymptotic distribution in (3.1) by expanding G, (sln’ + m*) around its minimun and then 
taking the thermodynamic limit. If G, has several, say p ,  minima given by {&} i = 1,2 ... p ,  
the distribution obtained will correspond to conditioning the magnetization to a neigh- 
bourhood of the point around which one is expanding G. 

For the class of measures we considered, we can state our results in the following form: 

exp [- G@)(O)$] ds, at the tricritical point, if it exists, 

exp [ - G(4) (0) $1 ds, at  the critical point of a 2nd-order phase transition, I N ( a ,  &- 11, at any other temperature where a - N (O,$) , 
with 5“ = dv (h) tgh2 G ( x *  + G h )  - [ dv (h) tgh ~ ( x *  + Gh)]2 .  

P 

Y -  
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This can be seen from the expansion of G,(x) in the form 

n G ,  ($y x + %*) = z0 GF) (x:) [s - n y  (x,* - x*)] - k! ' 
k n l - k ~  

as s+ny(x:-x*), 

where G?)(X) = G,(x). At the tricritical point all the derivatives before the sixth vanish, so 
one must take y = 1/6 in order to save the expansion as n+ CQ. This gives our first result. 
The second comes from a similar argument, since the criticality of a 2nd-order phase 
transition is characterized by G(2)(0) = 0. In that case one must take y = 1/4. Finally, if 
G ( 2 ) ( 0 ) > 0  one must take y =  1/2 and the random variable a =  f i ( n , * - x * )  has the 
distribution given above by the central-limit theorem. 
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