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Fluctuations in dilute antiferromagnets: Curie~Weiss models

J M G Amaro de Matost, J A Baéta Segundof and J F Perez§

Instituio de Fisica da Universidade de Sio Paulo, CP 20516, 01498 Sao Paulo, Brazil
Received 30 August 1991

Abstract. We compute the fluctuations of the order parameter in the Curie-Weiss version
of a site-dilute antiferromagnet. Our results show: (i) Gaussian fluctuations away from
criticality or at a first-order critical point with sample and thermal fluctuations contributing
in same order; (ii} Non-Gaussian fluctuations with criticai exponents modified by the
presence of dilution at the second-order critical point. In this case sample-induced flucta-
tions are enhanced to dominate over the thermal ones. Critical exponents are the same as
in Curie-Weiss random field Ising model.

1. Introduction

Considerable theoretical efiort has been made in recent years to understand the Ising
model in the presence of a random magnetic field (rmF) [1-8]. However, random
fields cannot be directly produced in Iaboratories. After the original paper by Fishman
and Aharony [3] and the arguments of Wong et al [9], there is a generalized belief
that this model is somehow equivalent to site-dilute antiferromagnetic Ising models
in the presence of an applied uniform magnetic field (DAF), which are experimentally
accessible systems [10]. Particularly, the degree of dilution and the intensity of the
field, which are supposed to be related to the RMF parameters, can be well controlled.

With few exceptions [11] the works on this equivalence have been centred in the
usual mean field approximation [ 3, 9, 12]. A complete mapping between the parameters
and phase diagrams has been obtained [4] for Curie-Weiss {cw) versions of both
models, which were solved [4, 6] by a method due to van Hemmen [13]. In spite of
being mean field models, the latter are somewhat subtler from the probabilistic point
of view. Rigorous work by Ellis and Newman [14-16] studying large deviation in
classical Ising-like cw models has shown that they display non-trivial fluctuations of
the order parameter at criticality. These results have been extended to disordered
models such as rmF [1, 2].

In this work we study the fluctuations of the cw version of the par model and
compare our results with those [1, 2] of the correspondent RMF model.

The Curie-Weiss DAF model we use is described in a finite volume A< Z“ by the
Hamiltonian

}'IDAFz 2N ué:j\ f.{,o’q. 2N :,J‘E‘Au glé}o-o- +— ‘EZA flg_;a-ao} +H Z §! (1)
jeho
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where Aoy =AN Z%, with Z2 (Z2) being the sublattice of Z¢ for which the sum of
coordinates of each site are even (odd) integers. The interaction is antiferromagnetic
(4> 0) between sites in different sublattices and there is an explicit ferromagnetic
interaction (J; = 0) between sites in the same sublattice. The random variables & € {0, 1}
describe the site dilution and they are taken to be independent and identically dis-
tributed, with

£ = {1 probability p
“lo probability 1 — p.

The spin variables, o, are, for simplicity, taken to be of Ising type: o;==x1. The
external magnetic field H is uniform and deterministic, and N denotes the number
of points in A,

The Hamiltonian (1) is slightly different from that used in a previous work [4]; it
permits, by making J, =0, the study of a more natural situation where no explicit
ferromagnetic interaction inside the sublattices is considered.

The RMF model to be compared with the model given by (1) is described by the
Hamiltonian

J

Heur N .-,,Z;'A o,0;+ EA ho; 2)

where h;, i € A, are independent identically distributed random variables, being equal
to £H with probability 3.

This paper is organized as follows. In section 2 we compute the thermodynamics
of the paF model defined by (1) and compare this with the thermodynamics of the
rMF defined by {(2) as computed in [6] and [1]. In particular we recover their complete
equivalence observed in {4] for J,=J. This thermodynamical equivalence however is
somewhat misleading, as it remains true even if p = 1! The solution of this apparent
paradox is presented in section 3 where we compute the asymptotics of the fluctuations
of the order parameter for large N to verify the equivalence of both models for all
values of Jy, 0=<J,=<J only if p# 1. For p=1, even if the two models are thermo-
dynamically equivalent (for J,=J), the statistics of their fluctuation-variables and in
particular their critical exponents are completely different. In particular for 0<p <1
we obtain non-self-averaging (i.e. sample dependent) fluctuations. At the critical
temperature, sample fluctuations dominate thermal fluctuations for large N, being of
the same order for T# T,.. These are the results in [1].

2. Thermodynamics of the model

We compute, for both models, their free energy f given by
1
o= m -3y 5 ™)

where § is the inverse of the temperature, {o} denotes all the possible spin configura-
tions, and H is the Hamiltonian. Taking H = Hpar as in (1), one may write

J, {S.+8\ I, (s,—s‘,)2
Hoar N( 2 ) N\ 2 (Se+ So)
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where
J=J-J
Seor = 1T and ! ¢
© iEfZ\:e(u) so " {Jz=-’+-]0-
Then
(N) HDAF+—_2NN i =N e(g,m)
DAF— Z e = ,B .I]Jz dm dq e DAF
{o} 47 J
where
L@t +Lm?  FY Jom—itq)-28H
qb(D:\L)F( )_E( 14 2m )_ ]ncosh[ﬁ( m—iJiq) B
2 2 2 2
LN Lm+ilig)+28H
- In coshl_B( 2 1q1q) 28 ] (3)
P L L d
with
)

elo) ™ N i)

Here we have twice made use of the identity

exp(a?) = \/_J- dx exp(-—fz—+\/§ax)

_ /Eﬁ(s,+so)
a=-1 N —2

in one case and

s
=NV N2

in the other, together with a suitable change of the integration variables.
Itcan be shown [17] that Laplace’s asymptotic method is valid for multiple integrals,
thus obtaining the following expression for free energy:

BfDAF(ﬁ; L L, p H)= ¢DAF(Q*, m*)

with

where
¢DAF(q, m)= !E,l_{r:o ¢E3Tl=(q, m)
2+ Jom? -iJiq) -
=_§(qu > 2 )—g{lncosh[ﬂ(]zm 1;:‘}) 23”]

B(L.m~+iJiq) +2BH}}
2

+In cosh[ (4)
and (g*, m*) is the saddle point of ¢par(g, m).
In the new variables
.q

m:tl
m,=—=x1%
= 2772
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the above expressions take the form
BfDAF(ﬂ: -’ 'IO: b, H)

ﬁ2° (mi+m2)+ BIm m_ ——[ln cosh{fJym_+ Bim,+ BH)

cosh(BJ,m.+BJm_— BH)]

+lnc
with m.. defined by the equation

m,= g tanh{BJym .+ BJm.F BH).

This result can also be obtained with the use of van Hemmen’s method as in [4]. In
particular for J,= J we have

. + ~ D
Bfoar(B, 1 1, p, H) =:8IM" —3 (In cosh(BJM + BH } +1n cosh(BJM — BH)] (5)
with M =m, + m_ defined by
M= g [tanh(8JM + BH)+tanh(BJM — BH)].

However it is knawn 1. 41 that the free enerov far the rw e madsel oiven hy

—owever, 1t 18 Xnown 1, 05 that the Iree energy Ior the Cw RMF mMogel given ©
(2) is
Bfeme(B, J, H)=1BJM?—1{In cosh(BJM + BH)+In cosh(BIM — BH )] (6)

with M determined by the equation
=§{tanh(BJM + BH) +tanh(BJM — SH)].

=72
Toe FEY e X F) 2 LMl bl a
From {5) and (6j it 1ollows that

Soar(B, 1, J, p, H) = pfame(B, pJ, H) (7
for any pe (0, 1] (including the deterhinistic case p=11}.

Remarks. (1) It may seem surprising that the equivalence holds true even for p=1,
the deterministic case. However we will show in section 3 that from the point of view
of fluctuations the models with p =1 and 0 < p <1 are drastically different, in particular
with different critical exponents.

{(ii) The exact mapping between the thermodynamics of the two models was only
possible for J,=J. However we will show in section 3 that from the point of view of
fluctuations the equality of critical exponents holds true even for 0=J,<J (p#1).

The above remarks indicate that no great importance should be assigned to this
thermodynamical equivalence.

3. Fluctuations

The study of fluctuations in the statistical mechanics of disordered systems is much
more complicated than in non-random models. This remains true even for Curie-Weiss
models. For the RMF model this has been rigorously discussed by Amaro de Matos
and Perez [1] extending the techniques and ideas used by Ellis and Newman {14-16]
in the study of non-random cw models.



Fluctuations in dilute antiferromagnets 2823

Here we proceed to compute the asymptotics for large N, of the fluctuations of
the order parameter in the DAF model. In [1] the reader will find the rigorous
justifications for the heuristic consideration we will present here.

Let us first consider the case J, = J. We will later on show that regarding fluctuations,
the models with § < J,=< J, are essentially equivalent.

The order parameter u, the difference of magnetization in the two sublattices,

- 2y {exp(—BHpar)(S.—8,)}/ N}
2 {exp(—BHpar)}

in the limit N - o satisfies

B= }5‘_1};10 BN

where u is defined by
¢oar(0, u) =inf{dpar(0, m): meR}.

The analysis of fluctuations of the order parameter consists then in the determination
of the probability distribution in the limit N = oc of the random variable:

S.— S, (8. — 8.) — N
NT( N p‘) = N1_7 B

Here the value of vy is to be determined as to guarantee a non-trivial limit for the
distribution of yy.
The probability distribution of y, for large N is related to the function

m? () (N)

¢gAF(0; m)=p (8)

as follows [1]. Introducing an auxiliary Gaussian random variable W of zero mean
and variance 1, i.e. W~ N(0, 1), independent of all other variables we have, for real
a and y:

w (S.-5.) Na dx exp[—Nzﬁ‘D"QF(O $+a)]

+ —
1/2—y 1—y
VBI N N deexp{ Nqb(rﬁ)p( N7+a)}

where the rHs is the probability distribution of the random variable in the Lus, For
a derivation of this formula see the appendix.
For large N, all relevant information is contained in what happens around the

point wx, the minimum of ¢BL:(0, m), i.e.
SHRE(0, p) =inf{dHRR(0, m): meR}.

So we first compute fluctuations around u,, using (9) with @ = »)y and expanding

B{0, 75 +mn)

around x =0, so obtaining the asymptotic distribution of the random variable

- (Se_ So) — N#'N
INTT Y

(9)
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The random variable z; will be said to represent the thermal fluctuations. Notice
however that wu, itself is a random variable because of the intrinsic randomness
(dilution) of the function S0, m) (see expression (3)), whose minimum is attained
at . The fluctnations of u, around the asymptotic value u (non-random!) will be
called sample induced fluctuations. Therefore the yy fluctuations will be obtained as
a ‘composition’ of the zy thermal fluctuations and the sample fluctuations of .

We begin with sample fluctuations from

pn =3tanh(BJuy — BH)FM +tanh(Bluy + BH)FY]

and
p =‘5’ [tanh(BJu - BH) +tanh(8Ju+ BH)].

First, the law of large numbers guarantees that u ~ ¢ with probability one. Expanding
then tanh(BJuy £ BH) around u we obtain for T = T, where u =0, the following
expression:

$para(0, 0}
BJ

J
pn = tanh(BH)(FS) — FOO)+ B seet(BH) (F§V + F&Y = 2p)

2
B seeni(BH) tanh(BH)(FS" - )ik “%Z‘F{;;JO'*O) :
¢DA .4(03 0) N N
—3!;7(1’2 "+ FM =2p)unt. .. (10)

where ¢pap; is the derivative of j-order of ¢pag-
Now, since Fify are sums of independent identically distributed random variables
converging both to p (the dilution), we obtain from the central limit theorem:

Ltanh(BH)(F(N) — F(N) —w}]_ (11
where
~N(0, o)
2 p(l P)

2
gy = 5 tanh“{BH).

We now define the ‘type’ of the minimum u of ¢;4r(0, m), as the smallest integer
k such that ¢par2x(0, &) #0. From (10) and (11) it then follows that for T=T,, i.e.
u =0, the sample fluctuations are given by:

(i) for k=1, i.e. away from criticality or at a first-order critical point

. B U
BN N oo $par2(0, 0) VN
(ii) for k=2, i.e. at a second-order critical point

~ 31 Uy 1/3
#n = [¢DAF,4(0,0) \/W] (12)

(12a)
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i.e.
Np(k)‘uN wa Vi (13)
where
(k) = —1__
P = 00K-1)
and
B
= fork=1
V.= ¢DAF,2(0, 0) !
. [ 3B U]U3 fork=2
—_— ork=2
Ppara(0,0)
Let us now deal with thermal fluctuations. From (9) with @ = u,, they are given by:
(V)
W (S=S)-Nuw & e""{ N”""”‘F( N’ﬂ‘”)} (14)
f J Nl,c"Z—'y Nl-‘)’
B Jf dx ﬁxD! (nhi)lr(o _"l" Mn\l
We then expand
x
5:"1):-(0, ~ l-m)
around x =0 to obtain
1
g\.;)F(O N7+FN) = ‘Jbgaﬁ)F(O, #N)""K,z_y ¢§3‘?F,2(0, ’-"N)x2+' .- (15)

Notice that ¢DAF1(0 pn) =0 since u, is a point of minimum for ¢Sne(0, m). Then
we expand ¢Ouk (0, in) as a power series in uy (i.e. around u=0). For instance,

¢DAF,2(0, F-N) = ¢§3‘1)F.2(0’ 0) + ¢§3TF.3(0, O)PW "'iﬁbg\}na(o’ O)HW +

Now it is crucial to notice that ¢} (0,0} is a sum of independent identically

distributed random variables, and so using the central limit theorem we have:

U,
DAF;(O 0) = ¢par {0, 0)+ﬁJJ—_L

IN=»co

where U, ~ N(0, a}). Therefore we obtain:

(i) fork=1 (i.e. ¢DAF,2(0s 0) > 0)
U.
d’%ﬁ)ﬁz(o’ g N”—:m ¢DAF,2(0, 0)+ ﬁj\/_ﬁ (16)

(ii) for k=2 (i.e. ¢pap2(0,0) = ¢rars(0,0)=0 and ¢par.(0,0)>0)

U, . doara(0,0) [ 38) Uy T”
(M) = —2 ~
Para(0, un) Nowo BJ,/N-P 2 ¢pars(0,0) VN

(17}
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We then go back to (14) using (15), (16) or (17) to see that:
(i) for k=1 (y=3

. : (Se_so)_j‘#N { [ 1 ! x2
| = | —————— —_] ——— paiy
Nl-l;lla N NI-IED Nlﬁr exp ¢DAF,2(0a ) 1 2 ] dx (lsa)

(ii) for k=2 (y=1%)

i Pparal0, 0) [ 38J :|2/3 xz}

lim z ~exp{... : X o b

i 2 Poars(0,0) ') 2 (18b)
ie.

Se—so

Zn = Nv(k)( ~ _“N) = L -

where
3 fork=1
_Jz
vlk)= {% fork=2

and T, is a Gaussian of zero mean.

Comparing (13} and (19) we see that the sample and thermal fluctuations contribute
in the same order for k=1 (i.e. away from criticality or at a first-order critical point),
¥(1} = p(1) =3, with Gaussian distributions. For k=2 (i.e. at a second-order critical
point) however, the sample fluctuations dominate over the thermal ones: y(2) =1,
p(2)=%. In conclusion

Se"so - Vi Ti
N now NP® T 7@

therefore

fork=1

U~N( BIU, ! 1)

Boar2(0,0)” Gpara(0,0)
V, fork=2.

lim yy =

N=co

Remarks. (i) Although for k =2 we are not in a central limit situation, the asymptotic
distribution of the sample fluctuations are Gaussian, with non-Gaussian critical
e¢xponent!

(ii) The above results show in particular that the fluctuations of the order parameter
are sample dependent in all cases. For k=1 the thermal fluctuations contribute in the
same order whereas for k =2 the sample induced fluctuations, due to the dilution, are
enhanced and dominate over the thermal fluctuation.

(iii) Fluctuations of the order parameter in the rRMF defined by (2) have been
computed with the same methods by Amaro de Matos and Perez [1,2]. They obtain
the same critical exponents and probability distributions of the same nature as the
ones above, for both k=1 and k=2.

Finally we discuss the case 0= J, < J. In this case we consider the saddle points of
¢Har(g, m) (equation (3)) and ¢par(g, m) (equation (4)); they are (g%, m%) and
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(g*, m*) given respectively by:

(N) * 4z * (N} * _: ¥ _
ok =i[Fo tanh(BszNﬂBquNHBH)_Fe tanh(BszN iB1a% 2BH)]

2 2 2 2
{(N) * s * (N) * L1 *
m’,‘:,=F° tanh('ajzm”ﬂ‘sf‘q”'l'ZBH)+F° tanh(ﬁjzm"’ ighiq% mH)
2 2 2
and
¥ L * _ *_
q*zii_’[mnh(ﬁlzm +iBhg +25H) an (mzm i, ng)]
2 2
® H *+ — —
. zg[tanh(ﬁf:m +1ﬁ;1q ZBH)H (BJ’zm ‘:31.q 2BH)'|

The law of large numbers guarantees again that in the limit N - o0, m¥% > m* and
g% -+ q* with probability one. The fact that ZJ\k is real implies the existence of a

unique ¢* given by: g* =ig, and g, < 0. Thus, expanding, as before,

tanh(ﬁfzm"&iiBJM"&iZBH)
2

around (g*, m*) for g < B, (i.e. m*=0), we obtain:
o
(2525) -
=1A,(EM 4+ EMYT(H) + (A EN + EXNYT(+) (g% — 9%)

_(5 ¢DAF) (gk—q*’
g J. 2

+iA, A, (EN — EXMY T/ (+)m:

: Yy BNy (q?\’_q*)z_[i(azd’DAF)] {(m%)’
+EAV(E]+EN)T'(+) Y ag\am® /], 2!

2
+iA AU EY + EMN T (+) ——— ('"”)

+({A )V AJ(ENMN - EMYT(+) (g —q*)m%

q - *)3
_(3 ¢'I1AF) (gk—q*) +({ADEMN + XM (qN q ) T"(+)
0g * 3!
. 3 (N)_ N) - ( N)3
+iA,(AL)(E, YT () ~——— T

(g% —q*)’m¥%

+(1A,AE - ESN) T (+) 3

_[-_af_ (azd)pm:)] (mm)z(q”iil_q*)
om*\ oq° /1, 2
(M*&)Z(g’k-q*)+

+A AP BN + ES)T(+)
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and
(aquDAF) *
z | "N
am* /,
= A EN ~EMMT(H) +{ADHEN + EMY T (+) m¥,
+iA AN ES = EM)T(+) (g% — ")+ (AP (ESY = EM) T+ ) (m%)

* %32
+(iAl)zAz(EiN’—EiN})T”(Jr)mTq)
é az‘tﬁDAF)] x * %
[aq( am? *((IN q*ym¥;
4 * 13
+iA1(Az)2(Ef,”’+Ei”))r"(+)(q°n—q*)m’ﬁr(‘a ¢—D?F) .
am” [, 3!
%13
+(A2)“(Ef,"”+EgN’)T"'(+)m__(";f"’)
* _ k3
_‘_(iAl)SAz(EE’NJ_EgN))Trf»(+) (CIN3'(1 }
_[6_‘* (a’:ﬁw)] (g% —g*)’m}
ag°\ am? /|, P)
+(iA1)2(A2)2(E§,N}+ ELN))T,”(-{_)M’T‘E
- EAYIOR TIPS
+ﬁAMAg%ﬁﬁ—EgthHQﬁﬂ%?_il{”
where
1911{2)
Ay = ——nt
1(2) 5
E(~)=F«(=&'.§ P
e(o) 2
and
T(+) =tanh(iA,g*+ BH).
Since
8¢
(Ti?% = A1+ A,p sech®(iA,g*+BH)]>0
*

there is no criticality associated with the parameter g.
This implies the behaviour

_ Gaussian
Na+x + N
Away from criticality (for m) we have (8°¢par/9m?), # 0, and from the expansion for
m¥, results in

qN—4q

* Gaussian
ml = ——
N-=soo hY) N
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The above shows therefore that the rate of approach of m¥ to m* as N - co is the

same as in the case J, = J, in particular we get the same critical exponents and asymptotic
probability distributions at both k=1 and k=2.

Appendix. The probability distribution of the order parameter
The derivation of formula (9) we present here is adapted from [1,14-16]. Let us

compute the characteristic function K,(¢f) of the random variable Ay=
[(S.~S,)—Nal/N'"™ '

1 . _ .
K.(1) =70 [Z} exp(i Ant) e PH) (A1)

where H = Hpar with J, =0, J, =2J (i.e. J, = J). In this case we compute the numerator
of (Al):

Y exp(i Ant) e PP
{e}

1 ) N BJ it
—— X2/ NN (B _
= 211_J‘dxe zexp[‘,2 F"'n cosh( v ,BH+N1VT):|
N [gr it
xcxp[-i- FMIn cosh( §x+ﬂH+N1_,):|

NETE 1PN TSN I

where
2 (N) (N)
N N BJx” F F,
¢ M (x)= pHar(0, x) = S 2 In cosh B(Jx— H) - In cosh B(Jx+ H).
The denominator of {Al) is obtained by setting 1 =0 in (A2} and therefore

Letnow W be a Gaussian random variable of zero mean and variance 1 independent
of all other variables involved in the problem. The characteristic function of
W/VBINY*" is exp(—1*/2BN'"*"). Now the characteristic function of a sum of
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independent random variables is the product of their characteristic functions and so
the left-hand side of (A3) is the characteristic function of

W (S.,~S8,)— Na
JH_JNUZ—}'-*_ Nl-'r

thus proving (9).
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