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Abstract

This paper studies the impact of dry markets for underlying assets on the
pricing of American derivatives, using a disrete time framework. Dry mar-
kets are characterized by the possibility of non-existence of trading at certain
dates. Such non-existence may be deterministic or probabilistic. Using su-
perreplicating strategies, we derive expectation representations for the range
of arbitrage-free values of the dervatives. In the probabilistic case, if we
consider an enlarged filtration induced by the price process and the market
existence process, ordinary stopping times are required. If not, randomized
stopping times are required. Several comparisons of the ranges obtained
with the two market restrictions are performed. Finally, we conclude that
arbitrage arguments are not enough to define the optimal exercise policy.
Keywords: American derivatives, pricing, incomplete markets, dry mar-

kets, superreplication, randomized stopping times, strong duality.



1 Introduction

Among the traditional assumptions on which derivatives’ pricing is based,
markets are perfect and the underlying asset can be transacted at any point
in time. Under the absence of arbitrage opportunities the value of a derivative
can be computed as the value of a portfolio on the underlying risky asset
and risk-free bonds that exactly replicates its payoff. Such portfolio can be
rebalanced in a self-financing way until the maturity of the derivative, by
continuously transacting the underlying asset and the bonds. Under these
assumptions, the calculated value of the initial portfolio can be shown to be
the equilibrium price of the derivative. Considering the case of American
derivatives it has been shown by Bensoussan (1984) and Karatzas (1988)
that, in this setting, the no-arbitrage value of one such derivative is indeed
the supremum of the implied European derivative values over all possible
stopping times.
In this paper we assume that an American derivative and its respective

underlying asset cannot be transacted at some points in time, and study
the impact of this constraint on the pricing of American derivatives. The
fact that the assets can be transacted only at some points in time can be
described as a lack of liquidity of the market, as in Longstaff (2001). We
shall refer to this situation as dry markets. We will consider two different
types of dry markets. In the first type, to be called deterministic illiquidity,
we know ex-ante exactly at which points in time markets do exist or do not
exist. In the second type, to be called probabilistic illiquidity, we assign a
probability p to the existence of the market at each point in time.
Markets’ dryness implies that markets may become incomplete in the

sense that perfect hedging of the derivative in all states of nature is no longer
possible. However, for any given derivative, portfolios can be found that have
the same payoff as the derivative in some states of nature and higher payoffs
in the other states. Such portfolios are said to be superreplicating (or super-
hedging). Holding one such portfolio should be worth more than the deriva-
tive itself and therefore, the value of the cheapest of such portfolios should be
seen as a bound on the value of the derivative. The nature of the superrepli-
cating bounds for European derivatives is well characterized in the context
of incomplete markets in the papers by El Karoui and Quenez (1991,1995),
Edirisinghe, Naik and Uppal (1993) and Karatzas and Kou (1996). A direct
application to the case of European option pricing when the market for the
underlying is dry can be found in Amaro de Matos and Antão (2001). As
all these results stress, under market incompleteness the hedging position of
a market-maker is different depending on whether this intermediary is in a
long or in a short position. This fact results in a lower and an upper bound
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for the derivatives’ values.
The superreplicating bounds establish the limits of the interval for the

prices outside which the market-maker has a positive profit with probability
one. In other words, an arbitrage opportunity exists if the market-maker
sells options above the upper bound or buys options below the lower bound.
There has been a relatively extensive literature in the continuous time

setting, analyzing this problem and characterizing in varying degrees of gen-
erality the superhedging bounds of American derivatives in incomplete mar-
kets. Examples are the papers by Kramkov (1996), Follmer and Kramkov
(1997), Follmer and Kabanov (1998) and Karatzas and Kou (1998). More
recently, a paper by Jha and Chalasani (2001) discuss the particular case of
transaction costs in discrete time and conclude that, in their specific setting,
the superreplicating bounds of one such derivative may also be written as the
supremum of the implied European derivative value. However, there are two
important subtleties in their result: first, the supremum in this case must be
taken over randomized stopping times and second, the probability measure
defining the European value over which the supremum is taken, may depend
itself on the randomized stopping time that solves the problem.
Jha and Chalasani (2001) relate their result to the fact that1, under in-

complete markets, the choice of exercise policy may influence the charac-
terization of the marketed subspace, and therefore influence the pricing of
securities. A rational exercise policy may even not be well defined if the
state-price deflator depends on the exercise policy. This argument would pro-
vide solid ground for the optimal randomized stopping times characterizing
the superreplication bounds of the American derivatives under proportional
transaction costs.
Our results show that, under dry markets, and in the same general dis-

crete time setting used by Jha and Chalasani (2001), we can also write the
superreplicating bounds of an American derivative as the supremum of the
implied European derivative value. However, the supremum in this case
may be taken over deterministic stopping times, as opposed to the intuition
provided by the above cited authors. Although the result for deterministic
illiquidity may be understood in the context of the superreplicating bounds
discussed in Harrison and Kreps (1979), the case of probabilistic illiquidity
is of a different nature since it crosses an additional source of uncertainty
(existence or non existence of the market at a given point in time).
Our work is organized as follows. Section 2 models the case of Determin-

istic Illiquidity, introducing the model and relevant probabilistic concepts.
Section 3 states the corresponding results, presenting the upper and lower

1For a discussion of this point see, among others, Duffie (2001), p.37.
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superreplicating bounds of American derivatives. This is followed by Sec-
tion 4 that models the case of Probabilistic Illiquidity, after what Section 5
presents the corresponding results for the upper and lower superreplicating
bounds of American derivatives. In section 6 these different bounds are com-
pared. The exercised policy in dry markets is discussed in section 7. Finally,
we section 8 we conclude. Our main technical proofs are presented in the
Appendix.

2 Deterministic Illiquidity

2.1 The model

Consider an economy where three different assets are transacted. The first
asset is a risk free asset with unitary initial value that provides a certain
total return of R per period; the second asset to be considered is a risky
asset (the stock); finally, the third asset is an American derivative, written
on the stock, with expiration date T.We work in discrete time, corresponding
to dates 0, 1, ..., T. The set of these dates is denoted by T ≡ {0, 1, . . . , T} .
The evolution of the value of the underlying asset is modelled by means of a
finite event tree. Each node of such tree is identified by a pair (j, t) , where
j denotes the j-th node at time t. There is only one node at time t = 0,
denoted by (0, 0) . For any given node (j, t) , the set of successors at time
t+ k, k > 0, is denoted by j+t (t+ k). For simplicity let j

+
t denote the set of

immediate successors, i.e., j+t ≡ j+t (t + 1). The nodes (j, T ) , at time T, are
called terminal nodes and j+T is assumed to be the empty set ∅. It is also
assumed that, for t < T , each nonterminal node (j, t) has a nonempty set of
immediate successors, i.e., j+t 6= ∅. In an analogous way, the set of immediate
predecessors of a node (j, t) 6= (0, 0) is denoted by j−t . In what follows we
shall consider the case where such sets j−t have a unique element. Moreover,
we denote by Jt the set of all nodes at any point in time t

Jt= ∪j (j, t) .

A path on the event tree is a set of nodes w = ∪t∈{0,1,...,T} (jt, t) such that
each element in the union satisfies (jt+k, t+ k) ∈ j+t (t+ k) , with k > 0 and
t + k ∈ {0, 1, ..., T} . Let Ω denote the set of all paths on the event tree.
Each node in the tree represents the set of all tree paths that contain that
node. Let S denote the process followed by the stock price. More precisely,
let S (j, t) denote the price of the stock at node (j, t) . A natural filtration on
the space Ω associated to the price process S is F = F0, F1, . . . , FT , where
each Ft is the σ-algebra generated by the random variable S (·, t). All the
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random variable will be defined in the measurable space (Ω,F). Similarly, let
G denote the process followed by the payoff of American derivative. Hence,
G (j, t) denotes the payoff of the American derivative at node (j, t) whenever
exercised at that point. Let S̄ (j, t) and Ḡ (j, t) stand for the discounted
values of the above processes, i.e.,

Ḡ (j, t) =
G (j, t)

Rt
and S̄ (j, t) =

S (j, t)

Rt
.

Dry markets are characterized by the fact that transactions are possible
only at some points in time. We hereby model dry markets allowing trans-
actions only at times t in a set Tm ⊆ T . It is also assumed that transactions
are possible at times t = 0 and t = T , i.e., {0, T} ⊆ Tm.
At any node (j, t) consider the portfolio constituted by ∆ (j, t) shares of

the underlying asset and an amount B (j, t) invested in the risk free asset.
One such portfolio is denoted by [∆ (j, t) , B (j, t)]. Its value process is given
by

V (j, t) = ∆ (j, t)S (j, t) +B (j, t) .

Consider a short position on the American derivative. A replicating strat-
egy is a sequence of portfolios {[∆ (j, t) , B (j, t)]}t∈Tm such that the value of
each of them is larger than or equal to the payoff of the derivative at any
non-terminal node in the next transaction time. Additionally, at any termi-
nal node its value is equal to the payoff of the derivative. In other words,
for any two consecutive trading dates t1 and t2 > t1, consider an arbitrary
node (j, t1) and the subset of its possible successors j+t1 (t2) Then, the port-
folio at t1, [∆ (j, t1) , B (j, t1)] , must be such as to generate in t2 a value
∆ (j, t1)S (i, t2) +B (j, t1)R

t2−t1 such that

∆ (j, t1)S (i, t2) +B (j, t1)R
t2−t1 ≥ G (i, t2)

with (i, t2) ∈ j+t1 (t2) and if t2 = T then

∆ (j, t1)S (i, T ) +B (j, t1)R
T−t1 = G (i, T ) .

A self-financed portfolio is a portfolio that generates enough wealth to rebal-
ance the portfolio according to any future state of nature. In other words,
for any two consecutive trading dates t1 and t2 > t1, consider an arbitrary
node (j, t1) and the set of its possible successors

©
(i, t2) : i ∈ j+t1

ª
. Then, the

value of the portfolio at that point in time, ∆ (j, t1)S (j, t1) +B (j, t1) must
be such as to generate

∆ (j, t1)S (i, t2) +B (j, t1)R
t2−t1 ≥ V (i, t2) .
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For a long position on the American derivative, analogous definitions are
obtained with reverted inequalities, but only for the nodes (i, t) such that
the option would be exercised, i.e., such that G (i, t) > V (i, t) .
If a complete market is considered the value of an American derivative is

the value of the cheapest self-financing portfolio on the underlying risky asset
and risk-free bonds that replicates the payoff of the American derivative. For
this portfolio the following condition will hold at any non-terminal node

∆ (j, t1)S (i, t2) +B (j, t1)R
t2−t1 = max [V (i, t2) , G (i, t2)] .

In dry markets, however, the number of transacted securities may be in-
sufficient to allow the construction of a self-financing portfolio that replicates
the payoff of an American derivative. In other words, markets may become
incomplete. In that case, there is not a unique arbitrage free value for the
American derivative. However, replacing the notion of replicating strategy
by the notion of superreplication strategy it is possible to derive an arbitrage
free range of variation for the value of the American derivative. In order to
find the upper bound of this range consider a short position in the derivative.
The upper bound will be the value of the cheapest portfolio that the buyer of
the derivative can buy in order to completely hedge against any possibility of
exercise of the American derivative and without need of additional financing
at any rebalancing dates. Note that in order to completely hedge against the
possibility of exercise the value of the portfolio, at any given node, has to be
equal or higher than the payoff of the American derivative. In that case it is
said that the portfolio superreplicates the payoff of the American derivative.
On the other hand, in order to find the lower bound of the arbitrage-free
range of variation consider a long position in the derivative. For a given
exercise policy consider the most expensive portfolio that the buyer of the
American derivative can buy in order to be fully hedged. The lower bound
is the value of the most expensive portfolio chosen among the portfolio just
described. Note that in this case the buyer of the American derivative is, for
a given exercise policy, completely hedged if in any node where the option
may be exercised the payoff of the American derivative is higher than the
value of the hedging portfolio. In this case it is said that the portfolio is
superreplicated by the American derivative.
Under market completeness, both limiting portfolios coincide with a repli-

cating portfolio and the value of the derivative is well characterized [Karatzas
(1988)]. Under market incompleteness however, that is no longer true and
the arbitrage-free value of the derivative must lie between the values of the
two limiting superreplicating portfolios.
In what follows we are going to characterize the upper and lower arbitrage-

free bounds for the value of the American derivatives in the framework de-
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scribed above. In order to do that, we first define some mathematical objects,
such as node probability measure, adjusted probability measure and stopping
time.

2.2 Some Probabilistic Definitions

Definition 2.1 A node probability measure is a nonnegative node func-
tion q (j, t) such that X

t∈Tm

X
(j,t)∈Jt

q (j, t) = 1.

The set of all node probability measures is denoted by Q.

Definition 2.2 A node probability measure on the event tree is said to be
simple if, for t ∈ Tm and t + k ∈ Tm , there are no two nodes in the
same path, say (i, t) and (j, t+ k) ∈ i+t (t+ k) , such that q (i, t) > 0 and
q (j, t+ k) > 0.

The following theorem is analogous to theorem 6.7 of Jha and Chalasani
(2001) but now in the framework of dry markets.

Theorem 2.1 (Jha and Chalasani) The extreme points of the set of nodes
Q are simple node probability measures, i.e., on every path on the event tree
there is at most one node where q is strictly positive.

The proof of this theorem follows closely the proof of theorem 6.7 in Jha
and Chalasani (2001) and is presented in the appendix A.

Definition 2.3 An adjusted probability measure is a nonnegative func-
tion P (i, t) such that P (0, 0) = 1 and for all t ∈ Tm

P (i, t) =
X

(j,s)∈i+(s)
P (j, s)

with s = min {z ∈ Tm : z > t} .

The set of all probability measures is denoted by P.

Definition 2.4 A process Z = {Zt : t ∈ Tm} is called adapted to the filtra-
tion F if for each t ∈ Tm, Zt is Ft-measurable.
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Let τ denote an ordinary stopping time that takes values in Tm, i.e., τ
is a map such that τ : Ω → Tm and {w : τ (w) ≤ t} ∈ Ft for all t ∈ Tm. We
define a nonnegative adapted process Xτ associated with τ that is defined
for all t ∈ Tm and has the form Xτ (i, k) = 1 if τ (w) = k and Xτ (i, k) = 0
otherwise, where (i, k) is a node in path w. Let T and XT denote the set of
all τ and associated Xτ , respectively.

Definition 2.5 A simple node probability measure is said to be associated
with a given stopping time if at any node such that Xτ (i, k) is equal to zero
then q (i, t) is also equal to zero. Moreover, at any node such that Xτ (i, k) is
strictly positive then q (i, t) is also positive.

The set of all node probability measures with this property is denoted by
Qτ .

Definition 2.6 For any adjusted probability measure P ∈ P and stopping
time τ ∈ T we say that P is a τ -martingale measure if, P -almost surely,
for any (i, t) with t ∈ Tm we haveX

m>t,m∈Tm

X
(j,m)∈i+t (m)

p (j,m)Xτ (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0

The set of all P that have this property is denoted by P (τ) .

Definition 2.7 For any adjusted probability measure P ∈ P we say that P is
a martingale measure if, P -almost surely, for any (i, t) ∈ Jt with t ∈ Tm
we have X

m>t,m∈Tm

X
(j,m)∈i+t (m)

p (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0

The set of all P that have this property is denoted by P.
Let (P,Xτ) denote a measure-strategy pair, i.e., a pair constituted by an

adjusted probability measure and a nonnegative adapted process.

Definition 2.8 A measure-strategy pair (P,Xτ) is said to be equivalent to
a node probability measure if P (i, t)Xτ (i, t) = q (i, t) for any given node (i, t)

We can now enunciate a fundamental result.
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Theorem 2.2 (Jha and Chalasani) Let (P,Xτ ) be a measure-strategy pair.
The simple node function q defined by q (i, t) = P (i, t)Xτ (i, t) is the unique
equivalent node-measure. Conversely, for a given simple node probability
measure, q, there is a measure-strategy pair (P,Xτ) equivalent to q, where P
is uniquely defined at nodes (i, t) where q (i, t) +

P
(j,τ)∈i+t (τ )
τ>t, τ∈Tm

q (j, τ) > 0, and

Xτ is uniquely defined at nodes (i, t) where q (i, t) > 0.

A version of the proof of this result, adjusted to case of dry markets, is
provided in Appendix A.

3 Results on Deterministic Illiquidity

3.1 Upper bound for the Value of an American Deriva-
tive

The upper bound for the value of an American derivative is the maximum
value for which the derivative would be transacted without allowing for ar-
bitrage opportunities. In order to find the upper bound consider a short
position in the derivative. The maximum value for which the derivative
would be transacted without allowing for arbitrage opportunities would be
the value of the cheapest portfolio that the buyer of the derivative can buy
in order to completely hedge against any possibility of exercise of the Amer-
ican derivative and without need of additional financing at any rebalancing
dates. A portfolio is initially built such that, at each transaction date un-
til maturity, it generates enough wealth, so as to be rebalanced according
to any revealed state of nature. Since by construction there is no need of
additional financing, one such strategy is said to be a self-financed strategy.
Additionally, it has to be a superreplicating strategy, i.e., a sequence of port-
folios {[∆ (j, t) , B (j, t)]}t∈Tm such that their values are greater or equal to
the payoff of the derivative at any node in the next transaction time. In other
words, for any two consecutive trading dates t1 and t2 > t1, consider an arbi-
trary node (j, t1) and the subset of its possible successors j+t1 (t2) . Then, the
portfolio at t1, [∆ (j, t1) , B (j, t1)] , must be such as to generate in t2 a value
∆ (j, t1)S (i, t2) +B (j, t1)R

t2−t1 such that

∆ (j, t1)S (i, t2) +B (j, t1)R
t2−t1 ≥ G (i, t2) , (1)

with (i, t2) ∈ j+t1 (t2) .
More formally, take any t1 ∈ Tm, such that t1 6= T . Define the consecutive

trading date as t2 = min (s ∈ Tm : s > t1) . The upper bound for the value
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of the American derivative can thus be seen as the solution of the following
problem:

V ud = min
{∆(j,t),B(j,t)} (j,t)∈Jt

t∈Tm\{T}

∆ (0, 0)S (0, 0) +B (0, 0)

subject to the superreplicating restrictions:

∆ (0, 0)S (0, 0) +B (0, 0) ≥ G (0, 0) , (2)

∆ (j, t1)S (i, t2) +B (j, t1)R
t2−t1 ≥ G (i, t2) , (3)

for all t1 ∈ Tm\ {T} and (i, t2) ∈ j+ (t2) with t2 = min (s ∈ Tm : s > t1) and
subject to the self-financing restrictions:

∆ (j, t1)S (i, t2) +B (j, t1)R
t2−t1 ≥ V (i, t2) (4)

for all t1 ∈ Tm\ {max {t ∈ Tm : t < T} , T} and (i, t2) ∈ j+ (t2) with t2 =
min (s ∈ Tm\ {T} : s > t1) .
Using results from linear programming the upper bound arbitrage free

bound of the American derivative can be written as follows.

Theorem 3.1 There exists a node probability measure q ∈ Q such that the
upper hedging price of an American derivative in a dry market can be written
as

V ud = max
q∈Q

X
t∈Tm

X
(j,t)

q (j, t) Ḡ (j, t)

such that for any (i, t) with t ∈ TmX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.

Proof. As the problem that must solved in order to find the upper bound
of the American derivative is a linear programming problem it is possible to
construct its dual. Let λ (0, 0) , λ (i, t2) and α (i, t2) be the dual variables
associated with restrictions (2), (3) and (4), respectively. Then, the dual
problem is

max
X

t∈Tm
λ (j, t)S (j, t)
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subject to

λ (0, 0)S (0, 0) +
X

(i,t)∈i+0 (t)
[λ (i, t) + α (i, t)]S (i, t) = S (0, 0) (5)

λ (0, 0) +
X

(i,t)∈i+0 (t)
[λ (i, t) + α (i, t)]Rt = 1 (6)

with t = min (s ∈ Tm : s > 0) ,X
(j,t2)∈i+t1 (t2)

S (j, t2) [λ (j, t2) + α (j, t2)]− α (i, t1)S (i, t1) = 0 (7)

X
(j,t2)∈i+t1(t2)

[λ (j, t2) + α (j, t2)]R
t2−t1 − α (i, t1) = 0 (8)

for all t1 ∈ T\ {0,max {s ∈ Tm : s < T} , T} and t2 = min (s ∈ Tm : s > t1) ,
and, finally, X

(j,T )∈i+t (T )
S (j, T )λ (j, T )− α (i, t)S (i, t) = 0 (9)

X
(j,T )∈i+(T )

S (j, T )RT−t − α (i, t) = 0 (10)

for all t = max {s ∈ Tm : s < T} .
Note that the restrictions (5), (7) and (9) of the dual problem are asso-

ciated with the variables ∆ (0, 0) , ∆ (i, t1) and ∆ (i, t) , respectively, of the
primal problem. In a similar way, the restrictions (6), (8) and (10) are, re-
spectively, associated with the primal variables B (0, 0) , B (i, t1) and B (i, t).
The restrictions presented in equations (7) and (9) can be rewritten such

that, for all t ∈ Tm\T, we haveX
(j,m)∈i+t (m)
m>t,m∈Tm

λ (j,m)Rm−tS (i, t) =
X

(j,m)∈i+(m)
m>t,m∈Tm

λ (j,m)S (j,m) , (11)

From equations (6), (8) and (10) we obtainX
(i,t)
t∈Tm

λ (i, t)Rt = 1 (12)

Considering equations (12), (5) and (12), we have, for all (i, t) ,X
(j,m)∈i+(m)
m>t,m∈Tm

λ (j,m)Rm−tS (i, t) =
X

(j,m)∈i+(m)
m>t,m∈Tm

λ (j,m)S (j,m) .
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Let q (i, t) = λ (i, t)Rt. For any t ∈ Tm\ {T} ,X
(j,m)∈i+(m)
m>t,m∈T

q (j,m) S̄ (i, t) =
X

(j,m)∈i+(m)
m>t,m∈T

q (j,m) S̄ (j,m) .

Hence, the dual problem can be written as

max
q∈Q

X
(i,t)∈Jt
t∈Tm

q (i, t) Ḡ (i, t)

such that for any (i, t) with t ∈ TmX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.

The upper bound solving the problem above can also be seen as the
solution of a more intuitive problem. In fact, it can be shown that this upper
bound maximizes over all possible stopping times the expected discounted
payoff, when the expectation is optimized among all adjusted probability
measures. In other words,

Theorem 3.2 There exists an adjusted probability measure P ∈ P (τ) and
an adapted process Xτ ∈ XT such that the upper hedging price of an American
derivative in a dry market can be written as

V ud = max
τ∈T

max
P∈P(τ)

EpGτ

with Gτ (i, t) = Xτ (i, t)G (i, t) . Additionally, if there is a probability measure
with positive probability on every path then the upper hedging price of an
American derivative in a dry market can be rewritten as

V ud = max
τ∈T

max
P∈P

EpGτ

where Gτ (i, t) = Xτ (i, t)G (i, t) , as before.

Proof. As Q is a convex set, the maximum of the problem

max
q∈Q

X
(i,t)∈Jt
t∈Tm

q (i, t) Ḡ (i, t)

such that for any (i, t) with t ∈ TmX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.
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is obtained at the extremes points of Q.
By theorem (2.1) we know that the extremes points are simple node

measures. Using theorem (2.2) we can rewrite the problem above as

max
τ∈T

max
P∈P(τ)

EpḠτ (13)

where

Ḡτ (i, t) = Ḡ (i, t)Xτ (i, t) .

As stressed in Jha and Chalasani (2001), page 64, if there is a martingale
measure P̂ ∈ P with positive measure on every path, w, the inner maxi-
mization in (13) can be restricted to all P ∈ P without affecting its value.
First, any P ∈ P also belongs to P (τ) . Second, any measure P ∈ P can be
redefined to be a martingale measure P 0 ∈ P (τ) such that EP 0Ḡτ = E

P Ḡτ ,
as follows

P 0 (i, t) =

(
P (i, t) , t ≤ k : if (i, t) ∈ w and τ (w) = k

P 0− (i, t)
P̂ (i,t)

P̂−(i,t)
otherwise

where P 0− (i, t) and P̂− (i, t) are the probabilities in the node that is an im-
mediate predecessor of (i, t) .

3.2 Lower bound for the Value of an American Deriva-
tive

The lower bound for the value of an American derivative is the minimum
value for which the derivative would be transacted without allowing for arbi-
trage opportunities. In order to find the lower bound consider a long position
in the derivative. As stressed in Karatzas and Kou (1998) while the seller of
the American derivative has to be hedged against any possible exercise pol-
icy, the buyer of the American derivative needs only to hedge against a given
exercise policy that is defined by himself. For a given exercise policy consider
the most expensive portfolio that the buyer of the American derivative can
buy in order to be fully hedged and without need of additional financing at
any rebalancing dates. The minimum value for which the derivative would be
transacted without allowing for arbitrage opportunities would be the value
of most expensive portfolio chosen among all the portfolios just mentioned.
For any given exercise policy τ and any node (j, t), such that (j, t) is

before the exercise time, consider the portfolio constituted of ∆τ (j, t) shares
of the underlying asset and an amount Bτ (j, t) invested in the risk free asset.
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For each exercising policy we are looking for the most expensive portfolio
that the buyer of the American derivative can buy that is self-financed and
is supperreplicated by the payoffs of the American derivative. A portfolio
[∆τ (j, t1) , B

τ (j, t1)] is said self-financing if, for any two consecutive trading
dates t1 and t2 > t1 and an arbitrary node (j, t1), the portfolio is such as to
generate in t2 a value ∆τ (j, t1)S (i, t2) +B

τ (j, t1)R
t2−t1 such that

∆τ (j, t1)S (i, t2) +B
τ (j, t1)R

t2−t1 ≤ V τ (i, t2) , (14)

for any node (i, t2) ∈ j+t1 (t2) before the exercise of the American derivative.
Additionally, a portfolio [∆τ (j, t1) , B

τ (j, t1)] is said to be superreplicated by
Gτ (i, t2) if, for any two consecutive trading dates t1 and t2 > t1 and an arbi-
trary node (j, t1) , it generates in t2 a value∆τ (j, t1)S (i, t2)+B

τ (j, t1)R
t2−t1

such that

∆τ (j, t1)S (i, t2) +B
τ (j, t1)R

t2−t1 ≤ Gτ (i, t2) , (15)

for any (i, t2) ∈ j+t1 (t2) when it is optimal to the holder of the American
option to exercise it given τ . The minimum value for which the derivative
would be transacted without allowing for arbitrage opportunities would be
the value of the most expensive portfolio chosen among all stopping times.
The lower bound for the value of the American derivative can thus be

seen as the solution of the following problem:

V ld = max
τ∈T

max
{∆τ (j,t),Bτ (j,t)}

∆τ (0, 0)S (0, 0) +Bτ (0, 0)

subject to the superreplicating restriction

∆τ (0, 0)S (0, 0) +Bτ (0, 0) ≤ Gτ (0, 0) ,

if τ (w) = 0 and, otherwise,

∆τ (j, t1)S (m, t3) +Bτ (j, t1)R
t3−t1 ≤ Gτ (m, t3) ,

for any (i, t2) such that Xτ (m, t3) = 1 and to the self-financing restrictions:

∆τ (j, t1)S (i, t2) +Bτ (j, t1)R
t2−t1 ≤ ∆τ (i, t2)S (i, t2) +Bτ (i, t2)

for any t1 with (i, t2) ∈ j+t1 (t2) such that Xτ (i, t2) = 0 and Xτ (j, t3) = 1 for
some (j, t3) ∈ j+t2 (t3) .
Using results from linear programming the upper bound arbitrage free

bound of the American derivative can be written as follows.
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Theorem 3.3 There exists a node probability measure q ∈ Qτ and a stopping
time τ ∈ T such that the upper hedging price of an American derivative in a
dry market can be written as

V ld = max
τ∈T

min
q∈Qτ

X
(j,t)

X
t∈Tm

q (j, t) Ḡτ (j, t)

with Ḡτ (j, t) = Ḡ (j, t)Xτ (j, t) and for any (i, t) and t ∈ TmX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.

Proof. For a given stopping time the problem that must be solved in
order to find the lower bound for the value of the American derivative is

max
{∆(j,t),B(j,t)} (j,t)∈Jt

t∈T \{T}

∆τ (0, 0)S (0, 0) +Bτ (0, 0)

subject to the following superrepilcating conditions

∆τ (0, 0)S (0, 0) +Bτ (0, 0) ≤ Gτ (0, 0) ,

if Xτ (0, 0) = 1, and,

∆τ (j, t1)S (i, t2) +B (j, t1)R
t2−t1 ≤ Gτ (i, t2) ,

for all t1 ∈ Tm\ {T} and (i, t2) ∈ j+ (t2) with t2 = min (s ∈ Tm : s > t1), if
Xτ (i, t2) = 1.
Additionally, for any node (i, t2) such that Xτ (i, t2) = 1 = 1 the self-

financing conditions apply, i.e.,

∆τ (k, t1)S (i, t2) +Bτ (k, t1)R
t2−t1 ≤ ∆τ (i, t2)S (i, t2) +B (i, t2)

for all t1 ∈ Tm\ {max {t ∈ Tm : t < T} , T} and (i, t2) ∈ j+ (t2) with t2 =
min (s ∈ Tm\ {T} : s > t1) .
Using an analogous procedure as in the proof where the upper bound

for the value of the American derivative was found we can write the dual
problem of the linear optimization problem described above

min
q∈Qτ

X
(i,t)∈Jt
t∈Tm

q (i, t) Ḡτ (i, t)

such that for any (i, t) with t ∈ TmX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.
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Optimizing with relation to τ the problem becomes

max
τ∈T

min
q∈Qτ

X
(i,t)∈Jt
t∈Tm

q (i, t) Ḡτ (i, t)

such that for any (i, t) with t ∈ TmX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.

Theorem 3.4 There exists an adjusted probability measure P ∈ P (τ) and
a stopping time τ ∈ T such that the upper hedging price of an American
derivative in a dry market can be written as

V ld = max
τ∈T

min
P∈P(τ)

Epτ Ḡτ

with Gτ (i, t) = Xτ (i, t)G (i, t). Additionally, if there is a probability measure
with positive probability on every path then the upper hedging price of an
American derivative in a dry market can be rewritten as

V ld = max
τ∈T

min
P∈P

EpGτ

where Gτ (i, t) = Xτ (i, t)G (i, t) , as before.

Proof. Using the result presented in theorem (3.3) and the theorem (2.2)
the proof is straightforward.
This resulted has already been conjectured as an extension in Harrison

and Kreps (1979). When the market is complete then P is a singleton and
the two bounds coincide with the unique arbitrage free value of the American
derivative.
In the following section the upper and lower upper arbitrage free bound of

the American derivatives when the illiquidity is not deterministic but prob-
abilistic. At certain dates there is uncertainty about the existence of the
market.

4 Probabilistic Illiquidity

4.1 The model

As in the previous section we shall work in discrete time, corresponding to
dates in T = {0, 1, . . . , T} . Let Tm ⊆ T be a set of points in time such
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that transactions are possible with probability one for all times t ∈ Tm.
By assumption, both 0 and T belong to Tm, i.e., transactions are certainly
possible at times t = 0 and t = T . Similarly, let Tp ⊆ T be defined as the
set of points in time such that transactions are possible, but not certain. For
each time t ∈ Tp, we assume that transactions are possible with an exogenous
probability p > 0 with Tm∪T p = T and Tm∩T p = ∅
We can think of the existence (or not) of the market at time t as the

realization of a random variable yt. This random variable is defined for
all t ∈ T and it is assumed to be independent of the ordinary source of
uncertainty that generates the price process. We can therefore talk about
a market existence process. In order to construct one such process, let us
first start with the state space. Let #(Tp) denote the number of points in
Tp. At each of these points, market may either exist or not exist, leading
to 2#(Tp) possible states of nature. We then have the collection of possible
states of nature denoted by Ωp = {vi}i=1,...,2#(Tp) , each vi corresponding to
a distinct state. Recall that Ω denotes the set of paths (w) in a perfectly
liquid market and Ft is the σ-algebra generated by the random variable St.
We now consider the new extended measurable space

¡
Ω̄, F̄

¢
, where

Ω̄ = Ω×Ωp

and

F̄ = F ×Fp,

with Fp = Fp0 , Fp1 , . . . , FpT , where F
p
t is the σ-algebra generated by the

random variable yt. Also recall that the random variable yt assumes the
values 0 (when there is no market) and 1 (when there is market) and is
not dependent on w. Note also that the variable yt depends only on the
information in Fp. Let py be the probability associated with the random
variable yt. For all t ∈ Tp, we have py (yt = 1) = p and py (yt = 0) = 1 − p.
Similarly, for all t ∈ Tm, py (yt = 1) = 1 and py (yt = 0) = 0. Let the T + 1
dimensional vector y denote a given realization of the process {yt}t∈T . There
are 2#(Tp) different possible vectors y.
As in section 2.1, the process followed by the stock price is denoted by S.

However, in the presence of probabilistic dry markets the stock price is only
observed when market exists, i.e., in all nodes (i, t) such that y (i, t) = 1.
As a motivation to what follows, let us consider an example. Consider

Tm = {0, 2, 4} and Tp = {1, 3} . At t = 1 there is a (1− p) chance that
the stock price will not be observed. The same thing happens at t = 3.
Hence, if there is no new information at these points in time, the σ-algebra
describing the information available to the market will be Ft = Ft−1. In our
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example, there are four different vectors y, given by y1 = (1, 1, 1, 1, 1) ,y2 =
(1, 0, 1, 1, 1) , y3 = (1, 1, 1, 0, 1) and y4 = (1, 0, 1, 0, 1) . Each one is associated
with a given probability, respectively, p2, p (1− p) , p (1− p) and (1− p)2.
We may describe the trees of information process associated to each of the
four possible circumstances as follows

0 1 2 3 4

With probability p2

0 1 2 3 4

With probability p(1-p)

0 1 2 3 4

With probability p(1-p)

0 1 2 3 4

With probability (1-p)2

0 1 2 3 4

With probability p2

0 1 2 3 4

With probability p2

0 1 2 3 4

With probability p(1-p)

0 1 2 3 4

With probability p(1-p)

0 1 2 3 4

With probability p(1-p)

0 1 2 3 4

With probability (1-p)2

Figure 1: For each y the information available to the market can be repre-
sented by a different tree.

The first tree (top, left) describes the case corresponding to vector y1,
where market exists at all points in time, coinciding with the perfectly liquid
market tree. The second tree (top, right) reflects the second case, corre-
sponding to vector y2, where market does not exist only at t = 1. We could
have drawn a tree with four branches going directly from the node at t = 0
to the corresponding four nodes at t = 2.We prefer the representation above,
since we want to make clear that the filtration F1 reflecting the information
available at t = 1 is the same as the filtration F0 reflecting the information
available at t = 0. In a similar way we have a tree representing the vector
y3 (low, left) and another one for the vector y4 (low, right). However, if we
want to describe all the possible situations in the same tree it will look like
the one described below
This super-tree plays a main role in the construction of our superhedg-

ing strategies. Actually, our extended filtration will work as if we have an
extended tree, coinciding with the one above, where transactions would not
be permitted at those nodes represented by open circles. We stress the point
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0 1 2 430 1 2 43

Figure 2: This tree describes all the possibilities under probabilistic illiquidity
at t = 1 and t = 3. The circles identify the nodes when it is not possible
to transact. In the final nodes identified with arrows the stock price is the
same.
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that nodes in this tree do not represent mere price realizations. They are
rather joint representations of the price process and the market existence
process. For instance, the terminal nodes indicated with arrows in the figure
are assumed to represent the same price level for the underlying asset, but
with different market existence realizations.
We now focus on the construction of the superreplicating strategies in the

case of probabilistic illiquidity. At any point in time, the number of shares
and the amount invested in the risk-free asset will depend on the existence,
or inexistence, of the market at the previous moments in time. However,
these values will not depend on the future existence of the market.
Let ∆ (j, t;y) and B (j, t;y) denote, respectively, the number of shares

and the amount invested in the risk free asset at node (j, t) for a given
realization, y, of the process {ys}s∈T . We assume that, if yt = 0 and (j, t)
is an arbitrary successor of (i, t− 1) , then ∆ (j, t;y) = ∆ (i, t− 1;y) and
B (j, t;y) = B (i, t− 1;y) , since the portfolio can not be rebalanced at time
t. For any given two different sets y1 and y2 with common values y11 =
y21, y

1
2 = y

2
2, y

1
3 = y

2
3, . . . up to time t, we assume that

∆
¡
j, t;y1

¢
= ∆

¡
j, t;y2

¢
and B

¡
j, t;y1

¢
= B

¡
j, t;y2

¢
.

Just as in the deterministic case, let V (j, t;y) denote the value process gen-
erated by such portfolio [∆ (j, t;y) , B (j, t;y)], i.e.,

V (j, t;y) = ∆ (j, t;y)S (j, t) +B (j, t;y)

Hence,

V
¡
j, s;y1

¢
= V

¡
j, s;y2

¢
.

In an analogous way to the case of probabilistic illiquidity the definition of
self-financed strategy and superreplicating strategy is dependent on whether
one is in a short or in a long position in the derivative.
In what follows we are going to characterize the upper and lower arbitrage-

free bounds for the value of an American derivative in the case of probabilistic
illiquidity.

4.2 Some Probabilistic Definitions

Analogously to what we did in section 2.1, we present some mathematical
tools to obtain the arbitrage-free bounds of the American derivative.
We begin by defining Ty as the subset of points in T after the last non-

trading date. Formally we define Ty = {s ∈ T : s ≥ Θ (y)} with

Θ (y) =

½
0 if yt = 1,∀t ∈ T ,
max (m+ 1 : ym = 0) otherwise.
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Notice that for liquid markets Ty = T .

Definition 4.1 A node probability measure is a nonnegative function
q (i, t;y), defined for any y and (i, t) with t ∈ Ty satisfyingX

(j,t)

X
t∈Ty

X
y
q (j, t;y) = 1. (16)

We now define a specific type of node probability measures.

Definition 4.2 A node probability measure on the event tree is said to be
y-simple if, for each y, any t and t+ k ∈ Ty, there are no two nodes in the
same path, say (i, t) and (j, t+ k) ∈ i+t (t+ k) , such that q (i, t;y) > 0 and
q (j, t+ k; ẏ) > 0 where ẏ is any set such that y1 = ẏ1, . . . , yt = ẏt.

The following theorem is analogous to theorem 2.1 but now in the frame-
work of probabilistic illiquidity. Let Q (y) denote the set of all node proba-
bility measures q (i, t;y).

Theorem 4.1 (Jha and Chalasani) The extreme points of the set of nodes
Q (y) are simple node probability measures, i.e., on every path on the event
tree there is at most one node where q is strictly positive.

The proof of this theorem follows closely the proof of theorem 2.1 and is
presented in Appendix B.

Definition 4.3 An adjusted probability measure is a nonnegative func-
tion p (i, t;y) defined for any y and (i, t) with t ∈ Ty such that p (0, 0) =
p (0, 0;y) = 1 and

p (i, t;y) =
X

(j,s)∈i+t (s)

X
{z:z0=y0,... ,zt=yt}

p (j, s; z) ,

with s =min {n ∈ Tz : yn = 1 and n > t} .

Let the set of all probability measures be denoted by Py. Also, let τ y
denote an ordinary stopping time that is conditional on the realization of
the process {yt}t∈T . For any y, τ y is a map that is defined from Ω to
{s ∈ T : ys = 1} such that {w : τ (w;y) ≤ t} ∈ Ft for all t ∈ {s ∈ T : ys = 1} .
Additionally, for two different sets y1 and y2 with common values y11 =
y21, y

1
2 = y

2
2, . . . , up to time t, if τ (w;y

1) = t then τ (w;y2) = t. We define a
nonnegative adapted process Xτ ,y associated with the stopping time that has
the form Xτ [i, k;y] = 1 if τ (w;y) = k and Xτ [i, k;y] = 0 otherwise. Let Ty
and XT,y denote the set of all τ (y) and associated Xτ (y), respectively.
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Definition 4.4 A y-simple node probability measure is said to be associated
with a given stopping time if q (i, t;y) is equal to zero when Xτ (i, t;y) is
equal to zero, and q (i, t;y) is positive when Xτ (i, k;y) is strictly positive,
for any y and node (i, t).

Let the set of all node probability measures with this property be denoted
by Qτ (y).

Definition 4.5 For any probability measure Py ∈ Py and stopping time τ y ∈
Ty we say that Py is a τ y-martingale measure if, Py-almost surely, for any
(i, t) and y such that yt = 1we haveX
(j,s)∈i+(s)

X
s>t,s∈Tz

X
{z:z0=y0,... ,zt=yt}

p (j, s; z)Xτ (j, s; z)
£
S̄ (i, t)− S̄ (j, s)

¤
= 0

The set of all Py that have this property is denoted by Py (τ y)
Let (Py, Xτ ,y) denote a measure-strategy pair, i.e., a pair constituted by

an adjusted probability measure and a nonnegative adapted process.

Definition 4.6 A measure-strategy pair (Py,Xτ ,y) is said to be equivalent
to a node probability measure if, for any given node (i, t) with t ∈ Ty,
p (i, t;y)Xτ (i, t;y) = q (i, t;y) .

We can now enunciate the following result, adapted from Jha and Cha-
lasani (2001) to include the random variable y.

Theorem 4.2 Consider a node probability measure q ∈ Q (y) . Then there
exists a measure-strategy pair (Py, τ y) equivalent to q, where for any given y,
Py is uniquely defined at node (i, t) where

q (i, t;y) +
X

(j,s)∈i+(s)

X
s>t,s∈Tz

X
{z:z0=y0,... ,zt=yt}

q (j, s; z)

is strictly positive and, for a given y, τy is uniquely defined at nodes (i, t)
where q (i, t;y) is defined and is strictly positive. Conversely, if (Py, τ y) is a
measure strategy-pair, then the node function q ∈ Q (y) such that q (i, t;y) =
p (i, t;y)X (i, t;y) is the unique equivalent node-measure.

Proof. The proof of this theorem is a modification of the one provided
in Jha and Chalasani (2001). See appendix.
All the mathematical definitions provided above are dependent of y. In

what follows we will shown that it is possible to define an adjusted probability
and a randomized stopping time in the original tree that is closely related
with the concepts just presented.
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Definition 4.7 An adjusted probability measure P̄ (i, t) is a nonnegative
function such that P̄ (0, 0) = 1 and P̄ (i, t) =

P
(j,t+1)∈i+t

P̄ (j, t+ 1), for all
t ∈ T .

The set of all probability measures P̄ is denoted by P̄.
A randomized stopping time is a nonnegative adapted process X with the

property that on every path of the event tree the sum of the random variable
is equal to one, i.e., X

t∈T
X (it, t) = 1 (17)

where it+1 ∈ i+t .The set of all randomized stopping time is denoted by X.

Definition 4.8 An adjusted probability measure P̄ ∈ P̄ is said to be a Xy-
martingale measure if there is a randomized stopping time X ∈ X, a
stopping time τ y ∈ Ty and an adjusted probability measure Py ∈ Py (τ y) such
that

X (i, t) P̄ (i, t) =
X

{y:yt=1}
p (i, t;y)Xτ (i, t;y)

for any (i, t) with t ∈ T .

The set of all P̄ that are Xy martingale measures is denoted by P̄ (Xy) .

Theorem 4.3 For any given τ y-martingale measure, Py ∈ Py (τ y) , the ad-
justed probability measure P̄ ∈ P̄ and the randomized stopping time X ∈ X
such that P̄ is a Xy martingale measure are as follow. The adjusted proba-
bility measure is such that P̄ (0, 0) = 1 and for any (i, t) ∈ j+t−1 (t) such that
α (j, t− 1) 6= 0, where

α (i, t) =
X

r≥t

X
{z:zt=1}

p (i, r; z)Xτ (i, r; z) +X
r≥s

X
(j,s)∈i+t−1

X
{z:zt 6=1}

p (j, r; z)Xτ (j, r; z)

and s = min {r ∈ T : r > t and Xτ (j, r; z) = 1} then,

P̄ (i, t) = P̄ (j, t− 1) α (i, t)P
(i,t)∈j+t−1(t)

α (i, t)
.

If
P

(i,t)∈j+t−1(t)
α (i, t) = 0 then P̄ (i, t) = P̄ (j, t−1) for a given successor (i, t)

of (j, t− 1) and zero for all others successors of (j, t− 1).
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The randomized stopping time X ∈ X is uniquely defined for any node
(i, t) such that P̄ (i, t) 6= 0 and is given by

X (i, t) =

P
{y:yt=1} p (i, t;y)Xτ (i, t;y)

P̄ (i, t)
.

If P̄ (i, t) = 0 but there is a predecessor (k, t− 1) such that P̄ (k, t − 1) 6= 0
take

X (i, t) =

P
(i,t)∈k+t−1(t)

α (i, t)

P̄ (k, t− 1) .

Otherwise, X (i, t) = 0.

Proof. See Appendix B3.

5 Results on Probabilistic Illiquidity

5.1 Upper bound for the Value of an American Deriva-
tive

The upper bound for the value of an American derivative is the maximum
value for which the derivative would be transacted without allowing for ar-
bitrage opportunities. As described in the deterministic illiquidity case, in
order to find the upper bound consider a short position in the derivative.
The maximum value for which the derivative would be transacted without
allowing for arbitrage opportunities would be the value of the cheapest self-
financed portfolio that the buyer of the derivative can buy in order to com-
pletely hedge against any possibility of exercise of the American derivative.
A strategy is said to be a self-financed strategy if for any given y the

portfolio at node (j, t1) , where t1 ∈ {t ∈ T : yt = 1} , generates in t2 a value
∆ (j, t1;y)S (i, t2) +B (j, t1;y)R

t2−t1 such that

∆ (j, t1;y)S (i, t2) +B (j, t1;y)R
t2−t1 ≥ V (i, t2;y) , (18)

with (i, t2) ∈ j+t1 (t2) and t2=min {s ∈ T : s > t and ys = 1} .
A sequence of portfolios {[∆ (j, t;y) , B (j, t;y)]}t∈T , one for each y, is

said to be a superreplicating strategy if its value is higher than or equal to
the payoff of the derivative at any node in the next transaction time. In other
words, for any trading dates t1 and t2 such that t1 ∈ {t ∈ T : yt = 1} and
t2=min {t ∈ T : t > t1 and yt = 1} and arbitrary nodes, (j, t1) and (i, t2) ∈
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j+t1 (t2) , the portfolio at t1, [∆ (j, t1;y) , B (j, t1;y)] , must be such as to gen-
erate in t2 a value ∆ (j, t1;y)S (i, t2) +B (j, t1;y)Rt2−t1 such that

∆ (j, t1;y)S (i, t2) +B (j, t1;y)R
t2−t1 ≥ G (i, t2) . (19)

Since it is the cheapest initial portfolio, the upper bound V up must satisfy

V up = minV (0, 0).

The decision variables are the ∆ (j, t;y) and B (j, t;y) for all non-terminal
nodes of the event tree. However, this optimization is subject to the con-
straints of self-financing (18) and superreplication (19).
More formally, for any given y take any t1 ∈ T such that yt1 = 1. Define

the consecutive trading date t2 such that t2 = min (s ∈ T : s > t1 and ys = 1) .
The upper bound for the value of the American derivative can thus be seen
as the solution of the following problem:

V up = min
{∆(j,t;y),B(j,t;y)}t∈{s∈T :ys=1}\{T}

∆ (0, 0)S (0, 0) +B (0, 0)

subject to the superreplicating restrictions:

∆ (0, 0)S (0, 0) +B (0, 0) ≥ G (0, 0) , (20)

∆ (j, t1;y)S (i, t2) +B (j, t1;y)R
t2−t1 ≥ G (i, t2) , (21)

and subject to the self-financing restrictions:

∆ (j, t1;y)S (i, t2) +B (j, t1;y)R
t2−t1 ≥ ∆ (i, t2;y)S (i, t2) +B (i, t2;y)

(22)

for any (i, t2) ∈ j+t1 (t2) .
Using results from linear programming the upper bound arbitrage free

bound of the American derivative can be written as follows.

Theorem 5.1 There is a node probability measure q ∈ Q (y) such that the
upper hedging price of an American derivative in a probabilistic dry market
can be written as

V up = max
q∈Q(y)

X
(j,t)

X
t∈Ty

X
y
q (j, t;y) Ḡ (j, t)

withX
(j,s)∈i+t (s)

X
s>t,s∈Tz

X
{z:z0=y0,... ,zt=yt}

p (j, s; z)Xτ (j, s; z)
£
S̄ (i, t)− S̄ (j, s)

¤
= 0
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Proof. This proof follows the methodology used in theorem (3.2). As the
upper bound for the value of the American derivative, V up , is the solution of
linear programming problem it is possible to construct its dual. Let λ (0, 0) ,
λ (i, t2;y) and γ (i, t2;y) denote the dual variables that are associated, re-
spectively, with the restrictions (20), (21) and (22) of the primal problem.
Note that, as we assume that given two different sets y1 and y2 with common
values y11 = y

2
1, y

1
2 = y

2
2, y

1
3 = y

2
3, . . . up to time t1, the portfolio will be the

same, i.e.,

∆
¡
j, t1;y

1
¢
= ∆

¡
j, t1;y

2
¢
and B

¡
j, t1;y

1
¢
= B

¡
j, t1;y

2
¢
,

then, λ (i, t2;y1) = λ (i, t2;y
2) for all (i, t2) ∈ i+t1 (t2) . Before presenting the

dual problem let define

Θt= {y :yt = 1 and min [s ∈ Ty : s > t] = min [s ∈ T : ys = 1 and s > t]} .

The dual problem is given by

max
q∈Q(y)

X
(j,t)

X
t∈Ty

X
y
λ (j, t;y) Ḡ (j, t)

subject to the conditions:

λ (0, 0)S (0, 0) +
X

(j,s)∈i+0 (t)

X
z∈Θ0

[λ (j, t; z) + γ (j, t; z)]S (j, t) = S (0, 0) ,

(23)

λ (0, 0) +
X

(j,s)∈i+0 (t)

X
z∈Θ0

[λ (j, t; z) + γ (j, t; z)]Rt = 1 (24)

where t = min {s ∈ Tz : s > 0}.
For any (i, t) and y such that t ∈ Ty\ {0,max [r ∈ Ty and r < T ] , T} ,X
(j,s)∈i+t (s)

X
z∈Θt

[λ (j, s; z) + γ (j, s; z)]S (j, s) = γ (i, t;y)S (i, t) (25)

and X
(j,s)∈i+t (s)

X
z∈Θt

[λ (j, s; z) + γ (j, s; z)]Rs−t = γ (i, t;y) (26)

where s = min {r ∈ Tz : r > t} . Finally, for any (i, t) and y such that t =
max {r ∈ Ty and r < T}X

(j,T )∈i+t (T )

X
z∈Θt

λ (j, T ; z)S (j, T )− γ (i, t;y)S (i, t) = 0 (27)
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and X
(j,T )∈i+t (T )

X
z∈Θt

λ (j, T ; z)RT−t − γ (i, t;y) = 0 (28)

The restrictions presented in equations (25) and (27) can be rewritten as

S (i, t) γ (i, t) =
X

r≥s

X
(j,r)∈i+t (r)

X
z∈Θt

λ (j, r; z)S (j, r)

and the restrictions presented in equations (26) and (28) can be rewritten as

γ (i, t) =
X

r≥s

X
(j,s)∈i+t (s)

X
z∈Θt

λ (j, r; z)Rr−t.

for all (i, t), t ∈ T \ {0, T} and with s = min {r ∈ Tz : r > t} . The two pre-
vious equations can be written as

S (i, t)
X

r≥s

X
(j,s)∈i+t (s)

X
z∈Θt

λ (j, r; z)Rr−t

=
X

r≥s

X
(j,s)∈i+t (s)

X
z∈Θt

λ (j, r; z)S (j, r)

Taking into account equations (23) and (24) we obtain, for all t ∈ T \ {T}

S (i, t)
X

r≥s

X
(j,s)∈i+t (s)

X
z∈Θt

λ (j, r; z)Rr−t

=
X

r≥s

X
(j,s)∈i+t (s)

X
z∈Θt

λ (j, r; z)S (j, r)

with X
t∈Ty

X
(j,t)

X
y
λ (j, t;y)Rt = 1.

Let q (i, t;y) = λ (i, t;y)Rt.then,

S̄ (i, t)
X

r≥s

X
(j,s)∈i+t (s)

X
z∈Θt

λ (j, r; z)Rr−t

=
X

r≥s

X
(j,s)∈i+t (s)

X
z∈Θt

λ (j, r; z) S̄ (j, r)

and X
t∈Ty

X
(j,t)

X
y
q (j, t;y) = 1.

The upper bound solving the problem above can also be seen as the
solution of a more intuitive problem. In fact, it can be shown that this upper
bound maximizes over all possible stopping times the expected discounted
payoff, when the expectation is optimized among all adjusted probability
measures. In other words,

26



Theorem 5.2 There is an adjusted probability measure Py ∈ Py (τ y) and an
adapted process Xτ ,y ∈ XT,y such that the upper hedging price of an American
derivative in a probabilistic dry market can be written as

V up = max
Xτ ,y∈XT,y

max
Py∈Py(τy)

Ep̄GXτ ,y

where GXτ ,y (i, t) = G (i, t)Xτ ,y (i, t)

Proof. In an analogous way to the proof of theorem (3.2), using theorem
(4.1) and theorem (4.2) the conclusion is straightforward.
Note that this result is the same that would be obtained if the filtration

that describes the stock price is an augmented one, in the spirit of the one
presented in figure (2), with no uncertainty about the existence of the market
and no transactions in some nodes (the ones identified in the figure).
However, the upper bound of the value of an American derivative can

also be written using randomized stopping times if an adjusted probability
measure with an additional characteristic is considered. The adjusted prob-
ability measure have to be decomposed in such a way that if an augmented
filtration is considered the stock price is a martingale.
If the initial filtration is considered it is not possible to write the upper

bound as an optimization over ordinary stopping times, as in theorem (5.2).
In this case, randomized stopping times may be needed.

Theorem 5.3 There is an adjusted probability measure P̄ ∈ P̄ (Xy) and a
process X ∈ X such that the upper hedging price of an American derivative
in a probabilistic dry market can be written as

V up = max
X∈X

max
P̄∈P̄(Xy)

Ep̄GX

with GX(i, t) = G (i, t)X (i, t) .

Proof. This result follows from the application of theorem (4.3) to the
result presented in theorem (5.2).
In what follows we are going to consider an example. The upper bound of

the American derivative is obtained using the primal and the dual problem.
In this example no optimal pure stopping time exists that maximizes the
expected value of the payoffs of the American derivative. The expected
value of the payoffs of the American derivative is maximized with randomized
stopping times.
Consider T = {0, 1, 2} , T = {0, 2} and Tp = {1} . Let R = 1 and the

uncertainty about the price of the underlying stock and the derivative be
given by
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Figure 3:

There are two sets y, y1 = {1, 1, 1} and y2 = {1, 0, 1} . The optimum
value of the variables in the primal problem is

∆ (0, 0;y1) = ∆ (0, 0;y2) = ∆ (0, 0) = 1, 5
B (0, 0;y1) = B (0, 0;y2) = B (0, 0) = 2
∆ (0, 1;y1) = 2, 5
B (0, 1;y1) = 0

that results in an optimum value of the function

∆ (0, 0)S (0, 0) +B (0, 0) = 6, 5.

In what concerns the dual problem the optimum value of the variables

q (0, 0) = q (0, 0;y1) = q (0, 0;y2) = 0
q (0, 1) = q (0, 1;y1) = 0.5
q (0, 2) = q (0, 2;y1) + q (0, 2;y2) = 0 + 0.5 = 0.5

As a result, the optimum value of the objective function is

q (0, 1)G (0, 1) + q (0, 2)G (0, 2) = 6.5.

In this case the probability measure Py is given by

py (0, 0) = 1
py (0, 1,y1) = 1 ∗ 0.5

0.5+0.5
= 0.5

py (0, 2,y1) = 0.5
py (0, 2,y2) = 0.5

and the stopping time τ y is such that Xτ is given by

Xτ (0, 0) = 0
Xτ (0, 1,y1) = 1
Xτ (0, 1,y2) = 0
Xτ (0, 2,y1) = 0
Xτ (0, 2,y2) = 1
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The probability measure P̄ is

P (0, 0) = P (0, 1) = P (0, 2) = 1

and the randomized stopping time X

X (0, 0) = 0
X (0, 1) = 0.5
X (0, 2) = 0.5

The use of the randomized stopping times is closed related to the fact
that we are using the filtration that reflects the information that is available
if the market is completely liquid.

5.2 Lower bound for the Value of an American Deriva-
tive

The lower bound for the value of an American derivative is the minimum
value for which the derivative would be transacted without allowing for ar-
bitrage opportunities. As in the deterministic illiquidity case, in order to
find the lower bound consider a long position in the derivative. For a given
exercise policy consider the most expensive self-financed portfolio that the
buyer of the American derivative can buy in order to be fully hedged. The
minimum value for which the derivative would be transacted without allow-
ing for arbitrage opportunities would be the value of most expensive portfolio
chosen among all the portfolios just mentioned.
For any given exercise policy τ y and any node (j, t), such that (j, t) is

before the exercise time, consider the portfolio constituted of ∆τy (j, t;y)
shares of the underlying asset and an amount Bτy (j, t;y) invested in the risk
free asset. Its value process is given by

V τy (i, t2;y) = ∆τy (i, t2;y)S (i, t2) +B
τy (i, t2;y)

For a long position in the derivative, a strategy is said to be a self-financed
strategy if for an any given y the portfolio at node (j, t1) , where t1 ∈
{t ∈ T : yt = 1} , generates in t2 a value such that

∆τy (j, t1;y)S (i, t2) +B
τy (j, t1;y)R

t2−t1 ≤ V τy (i, t2;y) , (29)

with (i, t2) ∈ j+t1 (t2), t2=min {s ∈ T : s > t and ys = 1} such that there is a
node (m, t3) ∈ j+t2 (t3) with t3 such Xτ (m, t3) = 1.
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A sequence of portfolios {[∆τy (j, t;y) , Bτy (j, t;y)]}t∈T , one for each y, is
said to be a superreplicating strategy if its value is higher than or equal to the
payoff of the derivative at any node in the next transaction time. In other
words, for any trading dates t1 and t2 such that t1 ∈ {t ∈ T : yt = 1} and
t2=min {t ∈ T : t > t1 and yt = 1} and arbitrary nodes, (j, t1) and (i, t2) ∈
j+t1 (t2) such that Xτ (i, t2) = 1, the portfolio at t1, [∆τ (j, t1;y) , B

τ (j, t1;y)] ,
must be such as to generate in t2 a value such that

∆τy (j, t1;y)S (i, t2) +B
τy (j, t1;y)R

t2−t1 ≤ Gτy (i, t2) . (30)

As described above, this would be the value of the most expensive self-
financing, ”superreplicating” portfolio. Since it is the most expensive initial
portfolio, the upper bound V u must satisfy

V lp = max
τy
V τy(0, 0).

The decision variables are the ∆τ (j, t;y) and Bτ (j, t;y) for all non-terminal
nodes of the event tree. However, this optimization is subject to the con-
straints of self-financing (29) and superreplication (30).
More formally, for any given y take any t1 ∈ T such that yt1 = 1. Define

the consecutive trading date as t2 = min (s ∈ T : s > t1 and ys = 1) . The
lower bound for the value of the American derivative can thus be seen as the
solution of the following problem:

V lp = max
τy∈Ty

max
{∆(j,t;y),B(j,t;y)}t∈{s∈T :ys=1}\{T}

∆τy (0, 0)S (0, 0) +Bτy (0, 0)

subject to the superreplicating restriction

∆τy (0, 0)S (0, 0) +Bτy (0, 0) ≤ Gτ (0, 0) ,

if Xτy (0, 0) = 1. However, if Xτy (0, 0) = 0, the superreplication condition is
defined for any node (i, t2) such that X (i, t2) = 1, and is given by

∆τy (j, t1)S (i, t2) +B
τy (j, t1)R

t2−t1 ≤ Gτy (i, t2) ,

for any t1 ∈ Tm\ {T} such that (i, t2) ∈ j+ (t2) and t2 = min (s ∈ Tm : s > t1) .
Additionally, for any node (i, t2) such thatXτy (i, t2) = 1 the self-financing

conditions apply, i.e.,

∆τy (k, t1)S
τy (i, t2) +B

τy (k, t1)R
t2−t1 ≤ ∆τy (i, t2)S (i, t2) +B

τy (i, t2)

for all t1 ∈ Tm\ {max {t ∈ Tm : t < T} , T} and (i, t2) ∈ j+ (t2) with t2 =
min (s ∈ Tm\ {T} : s > t1) .
Using results from linear programming the upper bound arbitrage free

bound of the American derivative can be written as follows.
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Theorem 5.4 There is a node probability measure q ∈ Qτ (y) and a process
τ y ∈ Ty such that the upper hedging price of an American derivative in a
probabilistic dry market can be written as

V lp = max
τy∈Ty

min
q∈Qτ (y)

X
(j,t)

X
t∈Ty

X
y
q (j, t;y) Ḡτy (j, t)

such that for any (i, t)and t ∈ TX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.

Proof. For a given stopping time the problem that must be solved in
order to find the lower bound for the value of the American derivative can
be rewritten as

V lp = min
q∈Qτ (y)

X
(j,t)

X
t∈Ty

X
y
q (j, t;y) Ḡτy (j, t)

such that for any (i, t)and t ∈ TmX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.

Considering the optimization with respect to τ y the problem becomes

max
τy∈Ty

min
q∈Qτ

X
(j,t)

X
t∈Ty

X
y
q (j, t;y) Ḡτy (j, t)

such that for any (i, t) with t ∈ TX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.

Theorem 5.5 There is an adjusted probability measure P̄ ∈ P̄ (Xy) and a
process τ y ∈ Ty such that the lower hedging price of an American derivative
in a probabilistic dry market can be written as

V lp = max
τy∈Ty

min
P̄∈P̄(Xy)

EpGτy

with Gτ(i, t) = G (i, t)Xτ (i, t)
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Proof. Using the result presented in theorem (5.4) and the theorem (4.2)
the proof is straightforward.
If the stopping times are defined in the original filtration, i.e., in the

filtration F = F0, F1, . . . , FT , where Ft = σ (St) then randomized stopping
times have to be considered.

Theorem 5.6 There is an adjusted probability measure P̄ ∈ P̄ (Xy) and a
process X ∈ X such that the lower hedging price of an American derivative
in a probabilistic dry market can be written as

V up = max
X∈X

max
P̄∈P̄(Xy)

Ep̄GX

with GX(i, t) = G (i, t)X (i, t) .

Proof. This result follows from the application of theorem (4.3) to the
result presented in theorem (5.5).

6 Comparison of the Results

In this section we will compare the arbitrage-free bounds of an American
derivative in a deterministic dry market, in a probabilistic dry market and
in a market where transactions are possible at any point in time. In other
words, we will compare the arbitrage-free bounds of an American derivative
if, at some given points in time, transactions are not possible, transactions
are possible with a given probability and transactions are possible.
The upper bound in a probabilistic dry market is higher than or equal to

the upper bound if the market is dry in the deterministic sense. Moreover, it
is also equal to or higher than the upper bound if transactions were possible
at all points in time. The reason is that we are using the pure arbitrage-free
concept. If, at a given point in time, it becomes possible to transact with a
given probability, the seller of the American derivative must hedge against
the possibility of exercise at that point in time. The value of the probability is
irrelevant because he will hedge against the worse scenario. In what concerns
the upper bound in a deterministic dry market it can be smaller or higher
than the upper bound if transactions were possible at all points in time. The
reason for this is quite intuitive. Consider an American derivative with a very
high payoff in a given moment where transactions were not possible due to
the deterministic dryness. If transactions were possible at that given moment
in time, the value of the American derivative could increase to become higher
than the upper bound in a deterministic dry market.
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The lower bound in a probabilistic dry market is higher than or equal to
the lower bound if the market is dry in the deterministic sense and is equal
to the lower bound if transactions were possible at all points in time (V l).
In what concerns the comparison with the deterministic case note that the
problem that must solved to obtain the lower bound in the deterministic
case is a ”subset” of the problem that is solved to find the lower bound in
the probabilistic case. It corresponds to the y with the highest number of
components equal to zero. Hence, V lp ≥ V ld . On the other hand, the problem
that must solved to obtain the lower bound in the case where transactions
are possible at all points in time is also a ”subset” of the problem that is
solved to find the lower bound in the probabilistic case. It corresponds to
the y with all components equal to one. Hence, V lp ≥ V l. Moreover, in the
probabilistic case, the trading strategies that solve the problem for any y
whose components are not all equal to one is a possible solution when y has
all components equal to one. Therefore, we can conclude that V lp = V

l.
Considering that the only source of incompleteness in the market is the

non-existence, or the possibility of non-existence, of the market at some
points in time if transactions if transactions were possible at all points in
time, markets would be complete and there would be a unique arbitrage-free
value for any American derivative. We found out that this unique arbitrage-
free value for each American derivative is equal to the lower bound of the
arbitrage-free range of variation for its value under a probabilistic dry market.
However, it may not belong to the arbitrage-free range if a deterministic dry
market is considered.
If the market is incomplete even with the existence of transactions at all

points in time it is not possible to find a unique arbitrage free value for the
American derivative. However, it is also possible to establish an arbitrage
free range of variation for the value of the American derivative. This range
will be a subset of the arbitrage free range of variation for the value of the
American derivative in the case of probabilistic dryness, but may be wider
than the arbitrage free range of variation in the deterministic case.

7 Exercise Policy

In order to understand the optimal exercise policy, we start presenting the
case of a complete market. In this case, the value of an American derivative
is given by

V u = max
τ∈T

max
P∈P

EpGτ (31)

where Gτ (i, t) = Xτ (i, t)G (i, t) , as before.
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If the solution is unique, the stopping time that solves (31) is the opti-
mal exercise policy for the holder of the American derivative. The reason
is as follows. Given an optimal stopping time τ ∗, we may define a stopping
time frontier as the set of nodes (i, t) such that Xτ∗ (i, t) = 1. Recalling
that there is an optimal stopping node for each possible path2, we define
the interior of the stopping time frontier as the set of predecessors of the
nodes that constitute the frontier. It follows that no rational agent exercises
the American derivative at a node inside the stopping time frontier, because
at such nodes, the American derivative is worth more than the correspond-
ing exercise. Whenever the stopping time frontier is reached, the American
derivative will be exercised by a rational agent. This happens because the
derivative’s payoff at that point is larger than the cost of a replicating port-
folio, guaranteeing the derivative’s payoff in the future.
If the solution is not unique there may be indeterminacy. An example

illustrates this point. Consider the non-terminal node (i, t1) and the terminal
nodes (j, t2) and (m, t2), which are the immediate successors of (i, t1) . The
replicating portfolio, at node (i, t1) , is the pair [∆ (i, t1) , B (i, t1)]. Assume
that this portfolio satisfies

∆ (i, t1)S (j, t2) +B (i, t1)R = G (j, t2)
∆ (i, t1)S (m, t2) +B (i, t1)R = G (m, t2)

(32)

We also assume that, at node (i, t1) ,

G (i, t1) = V (i, t1) . (33)

In this case, the value of the portfolio, at node (i, t1), that replicates the value
of the American derivative in nodes (j, t2) and (m, t2) is the same as the payoff
of the American derivative. Let P (i, t1) denote the price of the American
derivative at node (i, t1) . In this case P (i, t1) = G (i, t1) = V (i, t1) . Hence,
the holder of the American derivative will obtain the same payoff exercising
or selling the derivative.
In what concerns the dual variables, if, in the primal problem, the repli-

cating portfolio satisfies 32 and 33 the solution of the dual problem is not
unique. There are several node probability measures q solving the maximiza-
tion problem that characterizes the upper bound. Let q1 and q2 denote two
possible solutions. In that case q1 and q2 must satisfy

V u = max
q1∈Q

X
(i,t)∈Jt
t∈Tm

q1 (i, t) Ḡ (i, t) = max
q2∈Q

X
(i,t)∈Jt
t∈Tm

q2 (i, t) Ḡ (i, t)

2If the solution is unique, there is a unique strictly positive q associated to each path.
Hence, the stopping time is uniquely defined.
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such that for any (i, t) with t ∈ TmX
m>t,m∈Tm

X
(j,m)∈i+t (m)

q1 (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0

X
m>t,m∈Tm

X
(j,m)∈i+t (m)

q2 (j,m)
£
S̄ (i, t)− S̄ (j,m)

¤
= 0.

If the maximization problem characterizing the upper bound is not uniquely
solved by a node probability measure q, then the stopping time and the
adjusted probability measure are also not uniquely defined. For instance,
the upper bound can be written as

V u = max
τ1∈T

max
P1∈P(τ1)

Ep1Gτ1 = max
τ2∈T

max
P2∈P(τ2)

Ep2Gτ2

with Xτ1 (i, t1) = 1, Xτ1 (j, t2) = Xτ1 (m, t2) = 0, Xτ2 (i, t1) = 0 and
Xτ2 (j, t2) = Xτ2 (m, t2) = 1. Actually, the solution can be written with
randomized stopping times. See the appendix for an example.
As the stopping time is not unique there are several stopping time fron-

tiers, each one associated with a different stopping time. For any node inside
all stopping time frontiers, the argument of the unique case solution applies.
The agent does not have an incentive to exercise the American derivative.
However, when the first stopping time frontier is reached, namely node (i, t1) ,
the American derivative may be exercised. At node (i, t1) the value of the
replicating portfolio, the payoff of the American derivative and the market
value are the same. If the holder of the American derivative wants to guar-
antee the highest possible payoff at node (i, t1) he must exercise or sell the
derivative. If the holder of the American derivative wants to guarantee a
given payoff at some successor of (i, t1) , then he may have an incentive to
exercise, or sell the American derivative, and buy a replicating portfolio3.
Hence, by exercising the American derivative the agent can assure a better
result (although not strictly better) than by selling, as in the unique case
solution. If the American derivative is not exercised at any of the stopping
time frontiers, when the last one is reached the American derivative will be
exercised, for the reasons presented in the unique case solution.
With incomplete markets the problem is more complex. In order to char-

acterize the optimal exercise policy we use the stopping time (τu∗) that is
solution of the problem characterizing the upper bound of the arbitrage free
range of variation. Several points must be addressed. First, if the reduced

3Note that this portfolio has the same payoff as the American derivative at some suc-
cessors, and a higher payoff than the American derivative at other successors.
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filtration is considered, the solution may involve randomized stopping times.
Hence, it is not possible to conclude about an optimal exercise policy.
Second, if we consider the enlarged filtration, where ordinary stopping

times are enough to describe the upper bound, the stopping time is not
uniquely defined for all paths. Even for all paths with a strictly positive q the
optimum stopping time, τu∗ , is not uniquely defined. Let (j,m) be the node
such that q (j,m) > 0. Hence, the associated processXτu∗ (., .) will be equal to
one at that node, i.e., Xτu∗ (j,m) = 1. If node (j.m) is reached the derivative
will be exercised. However, it may be exercised at any predecessor of node
(j,m). The reason is as follows. Using pure arbitrage arguments it is possible
to conclude that at any predecessor of (j,m) the price of the derivative is
higher, or equal, to its payoff. Let a predecessor of (j,m) be denoted by (k, n).
If the price is higher than the payoff, i.e., P (k, n) > G(k, n), any rational
agent is better selling rather than exercising the derivative. If the price of the
derivative is equal to its payoff, i.e., P (k, n) = G(k, n),4 a rational holder who
wants to guarantee a given amount at that point in time is indifferent between
exercising or selling the derivative5. However, if the American derivative was
not exercised at any node that is a predecessor of the stopping time frontier
it will be exercised when the stopping time frontier is reached. The reason
is that the payoff is higher than the price and the value of the replicating
portfolio. However, if in a given path there are not any node with a strictly
positive q, the optimum stopping time can be such thatXτu∗ (., .) is one in any
node that has zero probability measure. As it is possible to have more than
one node with zero probability measure the exercise policy is not uniquely
defined.
Third and final point, the same problem that occurs in the complete

market case when the solution of the dual problem is not unique happens
when market are incomplete.

8 Conclusion

We have shown that in the case of deterministic illiquidity the bounds for the
values of American derivatives are the supremum of the implied European
derivatives, this supremum being taken over deterministic stopping times. In

4In this case V l (k, n) = G (k, n) < V u (k, n)
5If a rational agent wants to guarantee a given amount at any predecessor of (j,m)

he may have an incentive to sell, or exercise, the derivative and buy the superreplicating
portfolio. In spite the value of this portflio is higher than the amount received from selling,
or exercising, the derivative it has a higher payoff in the future.
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the probabilistic case there is an additional source of uncertainty, the exis-
tence or not of the market at given points in time, which can be interpreted
as the realization of an additional stochastic process. If an enlarged filtra-
tion, resulting from the price process and the market existence process is
considered, only ordinary stopping times are required to describe the upper
and lower bounds. However, if the enlarged filtration were not considered,
and the stopping times were defined using only the filtration induced by the
price process, then they could be randomized, just as in Jha and Chalasani
(2001).
The point that explains the difference between our result and that of

Jha and Chalasani (2001) is the following. In their paper, rebalancing the
superhedging portfolio is possible at any point in time, and the derivatives
have well defined payoffs at any point in time. However, due to transaction
costs, it may be optimal for their problem not to rebalance at some points
in time. The cheapest superhedging strategy could then be to replicate the
derivative’s payoff in consecutive points in time, for a given path. These
points with full replication correspond to optimal stopping. Since there may
be more than one per path, the optimal stopping time would be randomized.
In our case it is not possible to exercise the derivative when there is no
market for the underlying asset, and hence there is no need to hedge for
exercise at those points where it is not possible to rebalance the portfolio.
In particular, in the case of probabilistic illiquidity, our representation of the
superreplicating bounds with deterministic stopping times is strongly driven
by the fact that we consider the enlarged filtration resulting from the price
process and the market-existence process. If that were not case, the resulting
stopping times could also be randomized. In fact, had we considered only the
filtration generated by the price process, for any given price path it would
be optimal to hedge the payoff at different points in time.
In a complete market the arbitrage free value of the derivative is unique

and equal to the value of the replicating portfolio. Moreover, when an Amer-
ican derivative is considered under such conditions, the optimal exercise pol-
icy corresponds to the stopping time that is the supremum of the implied
European derivatives. However, in an incomplete market framework, the
superreplication methodology results in an arbitrage-free range of variation
for the value of the derivative. Hence, the market value of the derivative
is not defined under the strict absence of arbitrage. Consistently, if Ameri-
can options are considered in this setting, the optimal exercise policy is also
not well defined. The reason is that are paths were the stopping time is
not uniquely defined and, in addition, if the filtration induced by the price
process is considered, randomized stopping time must be used.
More technically the argument translates into the following. Under no
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transaction costs and complete markets, there is only one node per path such
that the value of the superhedging portfolio fully replicates the derivative’s
payoff. This unique node per path would correspond to the optimal exercise
of the derivative. Under market incompleteness, however, there are paths
for which such nodes do not exist, therefore not allowing a unique defini-
tion of the stopping time. In the setting of Jha and Chalasani (2001), in
particular, there may be some other paths for which more than one such
nodes exist, generating the randomness of the stopping times corresponding
to those paths. When dealing with dry markets, use of the enlarged filtra-
tion described above allows for at most one such node per path, avoiding in
this way the randomized stopping times. Hence, arbitrage arguments are not
enough to define the optimal exercise policy.
These conclusions are valid under the assumption that there exists a

unique solution for the dual problem when determining the upper bound, as
it is generally the case in both our setting and Jha and Chalasani’s. If there
is more than one solution for the dual problem with respect to a given path,
then there will exist more than one node satisfying full replication of the
derivative’s payoff for that path, even in complete markets. Moreover, one of
the solutions of the problem could always be written in terms of randomized
stopping times. However, both in complete markets and in dry markets under
the enlarged filtration, it is possible to write a solution in terms of ordinary
stopping times.
There are several pricing alternatives in the literature to characterize the

market value, or simply to restrict the arbitrage free range of variation. The
different approaches6 used with European options to choose a value in the
arbitrage-free range, or to restrict that range, could be helpful with American
derivatives. Notice that an important drawback of the bounds obtained with
probabilistic illiquidity is that these bounds do not depend on the probability
of market existence. However, if a statistical arbitrage concept, in the spirit
of Bondarenko (2002), rather than pure arbitrage is used, the bounds could
depend on the probability of the existence of the market. This is a further
line of research to be pursued.

6Equilibrium or utility based approach, as in Rubinstein (1976), Davis (1997) ;
risk/reward criterion as in Bernardo and Ledoit (2000), Cochrane and Saá-Requejo (2000)
and Bondarenko (2002); and considering the market price of risk associated with non
traded state variables as in Heston (1993).
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A Proof of theorems 2.1 and 2.2 of section
2.2

A.1 Proof of theorem 2.2

Proof. This theorem is corollary 5.5 of Jha and Chalasani (2001) with nodes
corresponding to trading dates t ∈ Tm. So, the proof of theorem 2.2 follows
the one presented there. In order to proof that for a given measure strategy-
pair (P,Xτ) the simple node measure q (i, t) = P (i, t)Xτ (i, t) is the unique
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simple node measure we only need to check that q (i, t) ≥ 0 andX
t∈Tm

X
(j,t)∈Jt

q (j, t)

=
X
t∈Tm

X
(j,t)∈Jt

P (i, t)Xτ (i, t)

=
X

(i,T )∈JT

P (i, T )
X

(j,t)∈w⊃(i,T )

Xτ (j, t) = 1.

On the other hand, for any give node (i, t) such that

q (i, t) +
X

j∈i+(τ )

X
τ>t
τ∈Tm

q (j, τ) > 0

the adjusted probability measure is uniquely defined and given by

P (i, t) = q (i, t) +
X

j∈i+(τ )

X
τ>t
τ∈Tm

q (j, τ) .

For all other nodes the adjusted probability measure is defined forward-
inductively in the following way. Consider any non-terminal node (i, t1) with
q (i, t1) > 0. Then, for a given immediate successor of (i, t1) , denoted (j, t2) ,
set P (j, t2) = P (i, t1). For all other immediate successors of (i, t1) set the
adjusted probability equal to zero. If (j, t2) is a nonterminal node then same
process applies until a terminal node is reached.
In what concerns the adapted process Xτ it is defined as follows

Xτ (i, t) =


q(i, t) , P (i, t) > 0P

j∈i+t2(τ )
P

τ>t2
τ∈Tm

q (j, τ) ,
P (i, t) = 0 and
P (j, t2) > 0 with (j, t2) ∈ i−t

0 , otherwise

The argument to proof the uniqueness of Xτ (i, t) when q (i, t) is strictly
positive is as follows. As Xτ (i, t) is equal to one or to zero when q (i, t) is
strictly positive then Xτ (i, t) is equal to one. On the other hand, if q (i, t) >
0 and Xτ (i, t) = 1 in order to have q (i, t) = p (i, t)Xτ (i, t) the adjusted
probability measure p (i, t) has to be equal to q (i, t). Additionally, as the
adjusted probability at any given point is the sum of the adjusted probability
on all successors the adjusted probability measure is uniquely defined in all
nodes such that

q (i, t) +
X

j∈i+(τ )

X
τ>t
τ∈Tm

q (j, τ) > 0.
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A.2 Proof of theorem 2.1

Proof. Consider some nonsimple node-measure q ∈ Q. We will construct
two new node probability measures a and c that belong to Q such that
q = 1

2
(a+ c). Hence, as any nonsimple node-measure is not an extreme point

we can conclude that an extreme point has to be a simple node-measure.
If q is a nonsimple node-measure then there is a node (i, t) such that

q (i, t) > 0 and
P

τ>t
τ∈Tm

P
(j,τ)∈i+t (τ)

q (j, τ) > 0. Consider such a node (i, t).

Fix some strictly positive ε such that ε < q (i, t) and for any q (j, k) > 0,
with k ∈ Tm, k > t and (j, k) ∈ i+t (k) , we have ε < q (j, k) . Define a node
measure a that is identical to q everywhere except that

a (i, t) = q (i, t)− ε

and, for any (j, k) such that q (j, k) > 0 with k ∈ Tm, k > t and (j, k) ∈
i+t (k) ,

a (j, k) = q (j, k)

1 + εP
(j,τ)∈i+t (τ)

P
τ>t
τ∈Tm

q (j, τ)

 .
Note that the total amount by which q is increased on all the successors of
(i, t) matches the amount by which q is decreased at (i, t)-that is, a is just a
redistribution of q, and so is also a node-measure. The above statement also
hold for the node-function c constructed as a but with −ε instead of ε. It is
easy to see that q = 1

2
(a+ c) .

In order to conclude that a ∈ Q we need to check that the following
conditions hold

a (j, t) ≥ 0, (34)

X
t∈Tm

X
(j,t)∈Jt

a (j, t) = 1 (35)

andX
τ>t0
τ∈Tm

X
(j,τ)∈i+

t0 (τ)
a (j, τ) S̄ (k, t0) =

X
τ>t0
τ∈Tm

X
(j,τ)∈i+

t0 (τ)
a (j, τ) S̄ (j, τ) .

(36)

The restrictions of equations (35) and (34) are trivially respected. In
what concerns the restriction in equation (36) only the relevant path is being
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analyzed. The restriction presented in equation (36) can be written asX
τ>t0
τ∈Tm

X
(j,τ)∈i+

t0 (τ)
[q (j, τ) + σ (j, τ)] S̄ (k, t0) (37)

=
X

τ>t0
τ∈Tm

X
(j,τ)∈i+

t0 (τ)
[q (j, τ) + σ (j, τ)] S̄ (j, τ)

where σ (j, τ) defined as

σ (j, τ) =



0 ,
(j, τ) such that τ < t or

(j, τ) ∈ i+t (τ) such that q (j, τ) = 0

−ε , (j, τ) = (i, t)

εq(j,τ)P
(j,τ)∈i+t (τ)

P
τ>t
τ∈Tm

q(j,m)
, otherwise

AsX
τ>t0
τ∈Tm

X
(j,τ)∈i+

t0 (τ)
q (j, τ) S̄ (k, t0) =

X
τ>t0
τ∈Tm

X
(j,τ)∈i+

t0 (τ)
q (j, τ) S̄ (j, τ)

equation (37) can be written asX
τ>t0
τ∈Tm

X
(j,τ)∈i+

t0 (τ)
σ (j, τ) S̄ (k, t0) =

X
τ>t0
τ∈Tm

X
(j,τ)∈i+

t0 (τ)
σ (j, τ) S̄ (j, τ) .

(38)

In order to check that equation (38) holds two alternative situations will
be considered. The first one is t0 ≤ t. In this case, equation (38) can be
written as

εS̄ (k, t0) +
εP

j∈i+(m)
P

m>t
m∈Tm

q (j,m)

X
j∈i(τ )

X
τ>t
τ∈Tm

q (j, τ) S̄ (k, t0)

= εS̄ (i, t) +
εP

j∈i+(m)
P

m>t
m∈Tm

q (j,m)

X
j∈i(τ )

X
τ>t
τ∈Tm

q (j, τ) S̄ (j, τ) .

As both members are equal to zero the equality holds. The second case to
be considered is t0 > t. In this case, equation (38) can be written as

εP
j∈i(τ )

P
τ>t
τ∈Tm

q (j, τ)

X
j∈i(τ )

X
τ>t0
τ∈Tm

q (j, τ) S̄ (k, t0)

=
εP

j∈i(τ )
P

τ>t
τ∈Tm

q (j, τ)

X
j∈i(τ )

X
τ>t0
τ∈Tm

q (j, τ) S̄ (j, τ)

As in the previous case, both members are equal to zero and the equality
holds.
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B Proof of theorem 4.1, 4.2 and 4.3 of section
4.2

B.1 Proof of theorem 4.1

Proof. Consider that the auxiliary node probability measures q̂ (i, t;y)
which, for any y, is defined for all t ∈ Ty and t ∈ max (t ∈ Tp : yt = 0).
By construction q̂ (i, t;y) is equal to zero for t ∈ max (t ∈ Tp : yt = 0) and
q̂ (i, t;y) = q (i, t;y) for all t ∈ Ty. Applying theorem 2.1 to the node proba-
bility measure q̂ (i, t;y) theorem 4.1 is straightforward.

B.2 Proof of theorem 4.2

Proof. Consider that the auxiliary node probability measures , q̃ (i, t;y),
and the auxiliary adjusted probability measures, p̃ (i, t;y) and X̃τ (i, t;y) are
also defined for all t ∈ max (t ∈ Tp : yt = 0). By construction, and q̃ (i, t;y)
is equal to zero for all t ∈ max (t ∈ Tp : yt = 0) and q̃ (i, t;y) = q (i, t;y) for
all t ∈ Ty.
Applying theorem 2.2 we find that

p̃ (i, t;y) =
X

{z:z0=y0,... ,zt=yt}

X
(j,t+1)

p̃ (j, t+ 1; z) .

and X̃τ (i, t;y) = 0, for all t ∈ max (t ∈ Tp : yt = 0) .

B.3 Proof of theorem 4.3

Proof. The proof that P̄ (i, t) is a adjusted probability measure is straight-
forward. In what concerns the randomized stopping time, X, we must check
that X (i, t) ≥ 0 and condition (17) is satisfied.
For any given node (j, t+ 1) ∈ i+t such α (j, t+ 1) 6= 0 we have

X (i, t) =
α (i, t)

P̄ (i, t)
−

α (i, t)−
P

{y:yt=1} p (i, t;y)Xτ (i, t;y)

P̄ (i, t)

=
α (i, t)

P̄ (i, t)
−
P

(j,t+1)∈i+t
α (j, t+ 1)

P̄ (i, t)

=
α (i, t)

P̄ (i, t)
− α (j, t+ 1)

P̄ (j, t+ 1)
.
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Consider a given path such that at the terminal node (i, T ) we have α (i, T ) >
0. In that case X

(i,t)∈w
X (i, t) = 1.

Consider a given path such that at the node (j, s) we have α (i, t) 6= 0 and
α (m, t+ 1) = 0. In that caseX

(k,r)∈w
X (k, r) = 1− α (i, t)

P̄ (i, t)
+X (i, t) +X (m, t+ 1) . (39)

Let (h, t+ 1) be a successor of (i, t) . If α (h, t+ 1) 6= 0 then P̄ (m, t+1) = 0.
Moreover, as P̄ (i, t) 6= 0 thenX (m, t+ 1) =

P
(i,t+1)∈i+t (t+1)

α(i,t+1)

P̄ (i,t)
. As a result,

equation (39) can be written as

X
(k,r)∈w

X (k, r) = 1− α (i, t)

P̄ (i, t)
+

P
{y:yt=1} p (i, t;y)Xτ (i, t;y)

P̄ (i, t)

+

P
(i,t+1)∈i+t (t+1)

α (i, t+ 1)

P̄ (i, t)
= 1.

However, if there are not a successor (h, t+ 1) of (i, t) such that α (h, t+ 1) 6=
0 then X

(k,r)∈w
X (k, r) = 1− α (i, t)

P̄ (i, t)
+X (i, t) +X (m, t+ 1) (40)

+
X

(k,r)∈w
r≥t+1

X (k, r) . (41)

P̄ (m, t + 1) can take two possible values: 0 and P̄ (i, t). Let us consider the
two possibilities:
- P̄ (m, t+ 1) = 0. This situation is the same as the one just described.
- P̄ (m, t + 1) = P̄ (i, t). As α (i, t) =

P
{y:yt=1} p (i, t;y)Xτ (i, t;y) then

− α(i,t)
P̄ (i,t)

+ X (i, t) = 0. Moreover, X(m, t + 1) = 0. For any (k, r) ∈ m+
t+1 (r)

such that P̄ (k, r) = P̄ (m, t+1) thenX (k, r) = 0. For a given (k, r) ∈ m+
t+1 (r)

such that P̄ (k, r) = 0 and P̄ (i, r − 1) with (k, r) ∈ i+r−1 then X (k, r) =P
(k,r)∈i+t (r)

α(k,r)

P̄ (m,t+1)
= 0

As a result, equation (40) is verified and the proof is complete.
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Figure 4:

C Exercise Policy

Example C.1 Consider a binomial tree with two periods. This framework is
described in the following way where in parenthesis are identified the nodesThe
primal problem can be written as

V u = min
{∆(0,0),B(0,0),∆(1,1),B(1,1),∆(2,1),B(2,1)}

∆ (0, 0)S (0, 0) +B (0, 0)

subject to the following conditions

∆ (0, 0)S (0, 0) +B (0, 0) ≥ G (0, 0) ,

∆ (0, 0)S (1, 1) +B (0, 0)R ≥ G (1, 1) ,

∆ (0, 0)S (2, 1) +B (0, 0)R ≥ G (2, 1) ,

∆ (1, 1)S (1, 2) +B (1, 1)R = G (1, 2) ,

∆ (1, 1)S (1, 2) +B (1, 1)R = G (1, 2) ,

∆ (2, 1)S (3, 2) +B (2, 1)R = G (3, 2) ,

∆ (2, 1)S (4, 2) +B (2, 1)R = G (4, 2) ,

and the self-financing restrictions

∆ (0, 0)S (1, 1) +B (0, 0)R ≥ ∆ (1, 1)S (1, 1) +B (1, 1)

∆ (0, 0)S (2, 1) +B (0, 0)R ≥ ∆ (2, 1)S (2, 1) +B (2, 1) .
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The dual problem can be written as

max
q (0, 0)

{q (i, 1)}i=1,2
{q (j, 2)}j=1,2,3,4

q(0, 0)Ḡ (0, 0) +
2X
i=1

q (i, 1) Ḡ (i, t) +
4X
i=1

q (i, 2) Ḡ (i, t)

such that

2X
i=1

q (i, 2)S (1, 1) =
2X
i=1

q (i, 2) S̄ (i, 2)

4X
i=3

q (i, 2)S (2, 1) =
4X
i=3

q (i, 2) S̄ (i, 2)

and"
4X
i=1

q (i, 2) +
2X
i=1

q (i, 1)

#
S (0, 0) =

4X
i=1

q (i, 2) S̄ (i, 2) +
2X
i=1

q (i, 1) S̄ (i, 1)

Consider the case where the interest rate is zero and the value of the under-
lying asset and the payoffs of the American derivative can be described asA

S(1,1)=110

G(1,1)=26

S(2,1)=80

G(2,1)=50

S(0,0)=100

G(0,0)=15

S(1,2)=118

G(1,2)=20

S(2,2)=99

G(2,2)=31

S(3,2)=95

G(3,2)=35

S(4,2)=75

G(4,2)=55

S(1,1)=110

G(1,1)=26

S(2,1)=80

G(2,1)=50

S(0,0)=100

G(0,0)=15

S(1,2)=118

G(1,2)=20

S(2,2)=99

G(2,2)=31

S(3,2)=95

G(3,2)=35

S(4,2)=75

G(4,2)=55

Figure 5:

47



possible789 solution of the primal problem is

∆ (., .) B (., .)
(0, 0) −0.8 114
(1, 1) −0, 579 88, 32
(2, 1) −1 130

Two possible solutions of the dual problem are given by

q1 (., .) q2 (., .)
(0, 0) 0 0
(1, 1) 0, 6667 0, 6667
(2, 1) 0, 3333 0
(1, 2) 0 0
(1, 2) 0 0
(1, 2) 0 0, 0833
(1, 2) 0 0, 25

q3 (., .)
0

0, 6667
0, 2933
0
0
0, 01
0, 03

The correspondent stopping time and probability measures10 are given in the
next table. The probability measure P ∈ P , that is uniquely defined, is

7The portfolio ∆(0, 0) and B(0, 0) is uniquely defined because it is the only one that
replicates at time t = 1. At node node (1, 1) the value of the portfolio [∆(0, 0),B(0, 0)] is
equal to G(1, 1) because the value of the portfolio that replicates G(1, 2) and G(2, 2)
is smaller than G(1, 1). On the other hand, at node (2, 1) the value of the portfolio
[∆(0, 0),B(0, 0)] is equal to G(2, 1) and to value of the replicating portfolio at t = 2,
because they coincide. Any other portfolio that superreplicates at time t = 1 would be
more expensive.

8The portolio ∆(1, 1) and B(1, 1) is not uniquely defined because the value at node
(1, 1) of the porfolio that replicates the payoffs of the American derivative at nodes (1, 2)
and (2, 2) is smaller that G(1, 1).

9In node (2, 1) the value of the portfolio that replicates the payoff of the American
derivative at nodes (3, 2) and (4, 2) is equal to the payoff of the American derivative, i.e.,
∆ (2, 1)S (2, 1) +B (2, 1) = G (2, 1) Hence, any other portfolio that replicates the payoffs
will have a cost higher than G (2, 1) resulting in a higher value of the function. As a result,
the portfolio in node (2, 1) is unique.
10The probability measures are not uniquely defined. The probability in bold menas

that it is uniquely defined in these nodes.
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presented in the last row.

τ 1(., .) P 1(., .) τ 2(., .) P 2(., .)
(0, 0) 0 1 0 1
(1, 1) 1 2

3
1 2

3

(2, 1) 1 1
3

0 1
3

(1, 2) 0 0 0 2
3

(2, 2) 0 2
3

0 0
(3, 2) 0 0 1 1

12

(4, 2) 0 1
3

1 1
4

τ 3rand(., .) P 3(., .)
0 1
1 2

3

0.88 1
3

0 0
0 2

3

0.12 1
12

0.12 1
4

P (., .)
1
2
3
1
3
22
57
16
57
1
12
1
4

If assumption 1 holds the exercise policy can be given by the stopping time
τ 1 or τ 2. However, if assumption 2 holds the exercise policy is given by
stopping time τ 2.
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