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Abstract

This paper studies the impact of dry markets for underlying assets
on the pricing and optimal exercise of American derivatives. Dry mar-
kets are characterized by the possibility of non-existence of trading at
certain dates. Such non-existence may be deterministic or probabilis-
tic. Using superreplicating strategies, we derive expectation represen-
tations for the range of arbitrage-free values of the derivatives. In the
probabilistic case, if we consider an enlarged �ltration induced by the
price process and the market existence process, ordinary stopping times
are required. If not, randomized stopping times are required. Several
comparisons of the ranges obtained with the two market restrictions
are performed. Finally, we conclude that market incompleteness delays
the optimal exercise of American derivatives, although there may exist
moments when there is indi¤erence between exercising and selling the
American derivative

1 Introduction

Among the traditional assumptions on which derivatives�pricing is based,

markets are perfect and the underlying asset can be transacted at any point

in time. Under the absence of arbitrage opportunities the value of a deriva-

tive can be computed as the value of a portfolio on the underlying risky asset

and risk-free bonds that exactly replicates its payo¤. Such portfolio can be
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rebalanced in a self-�nancing way until the maturity of the derivative, by

continuously transacting the underlying asset and the bonds. Under these

assumptions, the calculated value of the initial portfolio can be shown to be

the equilibrium price of the derivative. Considering the case of American

derivatives it has been shown by Bensoussan (1984) and Karatzas (1988)

that, in this setting, the no-arbitrage value of one such derivative is indeed

the supremum of the implied European derivative values over all possible

stopping times.

In this paper we assume that an American derivative and its respective

underlying asset may not be transacted at some points in time, generating

incomplete markets, and study the impact of this constraint on the pricing

of American derivatives. In particular, we are able to characterize some

features of the optimal exercise policy of such derivatives, and to write the

upper and lower bounds for their possible equilibrium values in terms of

both randomized and ordinary stopping times.

The fact that the assets can be transacted only at some points in time

can be described as a lack of liquidity of the market, as in Longsta¤ (2001).

We shall refer to this situation as dry markets. We will consider two di¤erent

types of dry markets. In the �rst type, to be called the deterministic case,

we know ex-ante exactly at which points in time markets do exist or do not

exist. In the second type, to be called the probabilistic case, we assign a

probability p to the existence of the market at each point in time.

Markets�dryness implies that markets may become incomplete in the

sense that perfect hedging of the derivative in all states of nature is no longer

possible. However, for any given derivative, portfolios can be found that

have the same payo¤ as the derivative in some states of nature and higher

payo¤s in the other states. Such portfolios are said to be superreplicating (or

superhedging). Holding one such portfolio should be worth more than the

derivative itself and therefore, the value of the cheapest of such portfolios
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should be seen as a bound on the value of the derivative. The nature of the

superreplicating bounds for European derivatives is well characterized in

the context of incomplete markets in the papers by El Karoui and Quenez

(1991,1995), Edirisinghe, Naik and Uppal (1993) and Karatzas and Kou

(1996). A direct application to the case of European option pricing when

the market for the underlying is dry can be found in Amaro de Matos and

Antão (2001). As all these results stress, under market incompleteness the

hedging position of a market-maker is di¤erent depending on whether this

intermediary is in a long or in a short position. This fact results in a lower

and an upper bound for the derivatives�values.

The superreplicating bounds establish the limits of the interval for the

prices outside which an investor has a positive pro�t with probability one.

In other words, an arbitrage opportunity exists if the investor sells options

above the upper bound or buys options below the lower bound.

There has been a relatively extensive literature in the continuous time

setting, analyzing this problem and characterizing in varying degrees of gen-

erality the superhedging bounds of American derivatives in incomplete mar-

kets. Examples are the papers by Kramkov (1996), Follmer and Kramkov

(1997), Follmer and Kabanov (1998) and Karatzas and Kou (1998). More

recently, a paper by Chalasani and Jha (2001) discusses the particular case

of transaction costs in discrete time and conclude that, in their speci�c set-

ting, the superreplicating bounds of one such derivative may also be written

as the supremum of the implied European derivative value. However, there

are two important subtleties in their result: �rst, the supremum in this case

must be taken over randomized stopping times and second, the probability

measure de�ning the European value over which the supremum is taken,

may depend itself on the randomized stopping time that solves the problem.

Chalasani and Jha (2001) relate their result to the fact that1, under

1For a discussion of this point see, among others, Du¢ e (2001), p.37.
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incomplete markets, the choice of exercise policy may in�uence the charac-

terization of the marketed subspace, and therefore in�uence the pricing of

securities. A rational exercise policy may even not be well de�ned if the

state-price de�ator depends on the exercise policy. This argument would

provide solid ground for the optimal randomized stopping times character-

izing the superreplication bounds of the American derivatives under propor-

tional transaction costs.

Our results show that, under dry markets, and in the same general dis-

crete time setting used by Chalasani and Jha (2001), we can also write the

superreplicating bounds of an American derivative as the supremum of the

implied European derivative value. However, the supremum in this case

may be taken over deterministic stopping times, as opposed to the intuition

provided by the above cited authors. Although the result for determinis-

tic dry markets may be understood in the context of the superreplicating

bounds discussed in Harrison and Kreps (1979), the case of probabilistic dry

markets is of a di¤erent nature since it crosses an additional source of un-

certainty (existence or non existence of the market at a given point in time).

Furthermore, we show that market incompleteness may delay the optimal

exercise of American derivatives.

Our work is organized as follows. Section 2 models the deterministic case,

introducing the model and relevant probabilistic concepts. Section 3 states

the corresponding results, presenting the upper and lower superreplicating

bounds of American derivatives. This is followed by Section 4 that models

the probabilistic case, after what Section 5 presents the corresponding results

for the upper and lower superreplicating bounds of American derivatives. In

section 6 these di¤erent bounds are compared. The exercise policy in dry

markets is discussed in section 7. Finally, we section 8 we conclude. Our

main technical proofs are presented in the Appendix.
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2 Deterministic Dry Markets

2.1 The model

Consider an economy where three di¤erent assets are transacted. The �rst

asset is a risk free asset with unitary initial value that provides a certain

total return of R per period; the second asset to be considered is a risky asset

(the stock); �nally, the third asset is an American derivative, written on the

stock, with expiration date T: We work in discrete time, corresponding to

dates 0; 1; :::; T: The set of these dates is denoted by T � f0; 1; : : : ; Tg : The
evolution of the value of the underlying asset is modelled by means of a

�nite event tree. Each node of such tree is identi�ed by a pair (j; t) ; where

j denotes the j-th node at time t. There is only one node at time t = 0,

denoted by (0; 0) : For any given node (j; t) ; the set of successors at time

t + k, k > 0, is denoted by j+t (t + k): For simplicity let j
+
t denote the set

of immediate successors, i.e., j+t � j+t (t + 1): The nodes (j; T ) ; at time T;
are called terminal nodes and j+T is assumed to be the empty set ;. It is
also assumed that, for t < T , each nonterminal node (j; t) has a nonempty

set of immediate successors, i.e., j+t 6= ;. In an analogous way, the set of
immediate predecessors of a node (j; t) 6= (0; 0) is denoted by j�t . In what
follows we shall consider the case where such sets j�t have a unique element.

Moreover, we denote by Jt the set of all nodes at any point in time t

Jt= [j (j; t) :

A path on the event tree is a set of nodes w = [t2f0;1;:::;Tg (jt; t) such
that each element in the union satis�es (jt+k; t+ k) 2 j+t (t+ k) ; with k > 0
and t+ k 2 f0; 1; :::; Tg : Let 
 denote the set of all paths on the event tree:
Each node in the tree represents the set of all tree paths that contain that

node. Let S denote the process followed by the stock price: More precisely,

let S (j; t) denote the price of the stock at node (j; t) : A natural �ltration on

the space 
 associated to the price process S is F = F0; F1; : : : ; FT ; where
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each Ft is the �-algebra generated by the random variable S (�; t). All the
random variable will be de�ned in the measurable space (
;F). Similarly,
let G denote the process followed by the payo¤ of American derivative.

Hence, G (j; t) denotes the payo¤ of the American derivative at node (j; t)

whenever exercised at that point. Let �S (j; t) and �G (j; t) stand for the

discounted values of the above processes, i.e.,

�G (j; t) =
G (j; t)

Rt
and �S (j; t) =

S (j; t)

Rt
:

Dry markets are characterized by the fact that transactions are possible

only at some points in time. We hereby model dry markets allowing trans-

actions only at times t in a set Tm � T . It is also assumed that transactions
are possible at times t = 0 and t = T , i.e., f0; Tg � Tm:

At any node (j; t) consider the portfolio constituted by �(j; t) shares of

the underlying asset and an amount B (j; t) invested in the risk free asset.

One such portfolio is denoted by [� (j; t) ; B (j; t)]. Its value process is given

by

V (j; t) = � (j; t)S (j; t) +B (j; t) :

Consider a short position on the American derivative. A replicating

strategy is a sequence of portfolios f[� (j; t) ; B (j; t)]gt2Tm such that the

value of each of them is larger than or equal to the payo¤ of the derivative

at any non-terminal node in the next transaction time. Additionally, at any

terminal node its value is equal to the payo¤ of the derivative. In other

words, for any two consecutive trading dates t1 and t2 > t1, consider an

arbitrary node (j; t1) and the subset of its possible successors j+t1 (t2) : Then,

the portfolio at t1, [� (j; t1) ; B (j; t1)] ; must be such as to generate in t2 a

value �(j; t1)S (i; t2) +B (j; t1)Rt2�t1 such that

�(j; t1)S (i; t2) +B (j; t1)R
t2�t1 � G (i; t2)

with (i; t2) 2 j+t1 (t2) and if t2 = T then

�(j; t1)S (i; T ) +B (j; t1)R
T�t1 = G (i; T ) :
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A self-�nanced portfolio is a portfolio that generates enough wealth to rebal-

ance the portfolio according to any future state of nature. In other words,

for any two consecutive trading dates t1 and t2 > t1, consider an arbitrary

node (j; t1) and the set of its possible successors
�
(i; t2) : i 2 j+t1

	
: Then, the

value of the portfolio at that point in time, �(j; t1)S (j; t1) +B (j; t1) must

be such as to generate

�(j; t1)S (i; t2) +B (j; t1)R
t2�t1 � V (i; t2) :

For a long position on the American derivative, analogous de�nitions are ob-

tained with reverted inequalities. Moreover, if a long position in the deriva-

tive is considered, superreplication only applies at the nodes (i; t) where the

option is be exercised.

If a complete market is considered the value of an American derivative is

the value of the cheapest self-�nancing portfolio on the underlying risky asset

and risk-free bonds that replicates the payo¤of the American derivative. For

this portfolio the following condition will hold at any non-terminal node

�(j; t1)S (i; t2) +B (j; t1)R
t2�t1 = max [V (i; t2) ; G (i; t2)] :

In dry markets, however, the number of transacted securities may be

insu¢ cient to allow the construction of a self-�nancing portfolio that repli-

cates the payo¤ of an American derivative. In other words, markets may

become incomplete. In that case, there is not a unique arbitrage free value

for the American derivative. However, replacing the notion of replicating

strategy by the notion of superreplication strategy it is possible to derive an

arbitrage free range of variation for the value of the American derivative. In

order to �nd the upper bound of this range consider a short position in the

derivative. The upper bound will be the value of the cheapest portfolio that

the buyer of the derivative can buy in order to completely hedge against

any possibility of exercise of the American derivative and without need of
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additional �nancing at any rebalancing dates. Note that in order to com-

pletely hedge against the possibility of exercise the value of the portfolio,

at any given node, has to be equal or higher than the payo¤ of the Ameri-

can derivative. In that case it is said that the portfolio superreplicates the

payo¤ of the American derivative. On the other hand, in order to �nd the

lower bound of the arbitrage-free range of variation consider a long position

in the derivative. For a given exercise policy consider the most expensive

portfolio that the buyer of the American derivative can buy in order to be

fully hedged. The lower bound is the value of the most expensive portfolio

chosen among the portfolio just described. Note that in this case the buyer

of the American derivative is, for a given exercise policy, completely hedged

if in any node where the option may be exercised the payo¤ of the American

derivative is higher than the value of the hedging portfolio. In this case it

is said that the portfolio is superreplicated by the American derivative.

Under market completeness, both limiting portfolios coincide with a

replicating portfolio and the value of the derivative is well characterized

[Karatzas (1988)]. Under market incompleteness however, that is no longer

true and the arbitrage-free value of the derivative must lie between the values

of the two limiting superreplicating portfolios.

In what follows we are going to characterize the upper and lower arbitrage-

free bounds for the value of the American derivatives in the framework

described above. In order to do that, we �rst de�ne some mathematical ob-

jects, such as node probability measure, adjusted probability measure and

stopping time.

2.2 Some Probabilistic De�nitions

De�nition 2.1 A node probability measure is a nonnegative node func-

tion q (i; t) satisfying X
t2Tm

X
(i;t)2Jt

q (i; t) = 1:
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The set of all node probability measures is denoted by Q.

De�nition 2.2 A node probability measure on the event tree is said to be

simple if, for t 2 Tm and t + k 2 Tm , there are no two nodes in the

same path, say (i; t) and (j; t+ k) 2 i+t (t+ k) ; such that q (i; t) > 0 and

q (j; t+ k) > 0.

The following theorem is analogous to theorem 6.7 of Chalasani and Jha

(2001) but now in the framework of dry markets.

De�nition 2.3 A node probability measure q 2 Q is said to be a node

martingale measure if, for all (i; t) 2 Jt and t 2 Tm; satis�esX
�>t
�2Tm

X
(j;�)2i+t (�)

q (j; �) �S (i; t) =
X

�>t
�2Tm

X
(j;�)2i+t (�)

q (j; �) �S (j; �) :

The set of all node martingale measures is denoted by QM.

Theorem 2.1 (Chalasani and Jha) The extreme points of the set QM

are simple node probability measures, i.e., on every path on the event tree

there is at most one node where q is strictly positive.

The proof of this theorem follows closely the proof of theorem 6.7 in

Chalasani and Jha (2001) and is presented in the appendix A.

De�nition 2.4 An adjusted probability measure is a nonnegative func-

tion P (i; t) such that P (0; 0) = 1 and for all t 2 Tm

P (i; t) =
X

(j;s)2i+(s)
P (j; s)

with s = min fz 2 Tm : z > tg :

The set of all probability measures is denoted by P.

De�nition 2.5 A process Z = fZt : t 2 Tmg is called adapted to the �ltra-
tion F if for each t 2 Tm, Zt is Ft-measurable.
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Let � denote an ordinary stopping time that takes values in Tm, i.e., �
is a map such that � : 
! Tm and fw : � (w) � tg 2 Ft for all t 2 Tm: We
de�ne a nonnegative adapted process X� associated with � that is de�ned

for all t 2 Tm and has the form X� (i; k) = 1 if � (w) = k and X� (i; k) = 0

otherwise, where (i; k) is a node in path w. Let T and XT denote the set of

all � and associated X� , respectively.

De�nition 2.6 A simple node probability measure is said to be associated

with a given stopping time if at any node such that X� (i; k) is equal to zero

then q (i; t) is also equal to zero. Moreover, at any node such that X� (i; k) is

strictly positive then q (i; t) is also positive.

The set of all node probability measures with this property is denoted

by Q� .

De�nition 2.7 For any adjusted probability measure P 2 P and stopping
time � 2 T we say that P is a � -martingale measure if, P -almost surely,

for any (i; t) with t 2 Tm we haveX
m>t;m2Tm

X
(j;m)2i+t (m)

p (j;m)X� (j;m)
�
�S (i; t)� �S (j;m)

�
= 0;

The set of all P that have this property is denoted by P (�) :

De�nition 2.8 For any adjusted probability measure P 2 P we say that

P is a martingale measure if, P -almost surely, for any (i; t) 2 Jt with
t 2 Tm we have X

(j;m)2i+t (m)

p (j;m)
�
�S (i; t)� �S (j;m)

�
= 0;

where m 2 Tm:

The set of all P that have this property is denoted by P:
Let (P;X� ) denote a measure-strategy pair, i.e., a pair constituted by

an adjusted probability measure and a nonnegative adapted process.
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De�nition 2.9 A measure-strategy pair (P;X� ) is said to be equivalent

to a node probability measure if P (i; t)X� (i; t) = q (i; t) for any given node

(i; t)

We can now enunciate a fundamental result.

Theorem 2.2 (Chalasani and Jha) Let (P;X� ) be a measure-strategy pair:

The simple node function q de�ned by q (i; t) = P (i; t)X� (i; t) is the unique

equivalent node-measure. Conversely, for a given simple node probabil-

ity measure q, there is a measure-strategy pair (P;X� ) equivalent to q,

such that P and X� are uniquely de�ned at nodes (i; t) where q (i; t) +P
(j;�)2i+t (� )
�>t; �2Tm

q (j; �) > 0:

A version of the proof of this result, adjusted to case of dry markets, is

provided in Appendix A.

3 Results on Deterministic Dry Markets

3.1 Upper bound for the Value of an American Derivative

The upper bound for the value of an American derivative is the maximum

value for which the derivative would be transacted without allowing for ar-

bitrage opportunities. In order to �nd the upper bound consider a short

position in the derivative. The maximum value for which the derivative

would be transacted without allowing for arbitrage opportunities would be

the value of the cheapest portfolio that the buyer of the derivative can buy

in order to completely hedge against any possibility of exercise of the Amer-

ican derivative and without need of additional �nancing at any rebalancing

dates. A portfolio is initially built such that, at each transaction date un-

til maturity, it generates enough wealth, so as to be rebalanced according

to any revealed state of nature. Since by construction there is no need of

additional �nancing, one such strategy is said to be a self-�nanced strategy.
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Additionally, it has to be a superreplicating strategy, i.e., a sequence of port-

folios f[� (j; t) ; B (j; t)]gt2Tm such that the value of each of them is larger

than or equal to the payo¤ of the derivative at any non-terminal node in

the next transaction time. In other words, for any two consecutive trading

dates t1 and t2 > t1, consider an arbitrary node (j; t1) and the subset of

its possible successors j+t1 (t2) : Then, the portfolio at t1, [� (j; t1) ; B (j; t1)] ;

must be such as to generate in t2 a value �(j; t1)S (i; t2) + B (j; t1)Rt2�t1

such that

�(j; t1)S (i; t2) +B (j; t1)R
t2�t1 � G (i; t2) ; (1)

with (i; t2) 2 j+t1 (t2) :
More formally, take any t1 2 Tm; such that t1 6= T . De�ne the con-

secutive trading date as t2 = min (s 2 Tm : s > t1) : The upper bound for
the value of the American derivative can thus be seen as the solution of the

following problem:

V ud = min
f�(j;t);B(j;t)g (j;t)2Jt

t2TmnfTg

�(0; 0)S (0; 0) +B (0; 0)

subject to the superreplicating constraints:

�(0; 0)S (0; 0) +B (0; 0) � G (0; 0) ; (2)

�(j; t1)S (i; t2) +B (j; t1)R
t2�t1 � G (i; t2) ; (3)

for all t1 2 Tmn fTg and (i; t2) 2 j+ (t2) with t2 = min (s 2 Tm : s > t1) and
subject to the self-�nancing constraints:

�(j; t1)S (i; t2) +B (j; t1)R
t2�t1 � V (i; t2) (4)

for all t1 2 Tmn fmax ft 2 Tm : t < Tg ; Tg and (i; t2) 2 j+ (t2) with t2 =
min (s 2 Tmn fTg : s > t1) :

Using results from linear programming the upper bound of the range

of variation for the arbitrage-free value of an American derivative can be

written as follows.
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Theorem 3.1 There exists a node probability measure q 2 QM such that

the upper hedging price of an American derivative in a dry market can be

written as

V ud = max
q2QM

X
t2Tm

X
(j;t)2Jt

q (j; t) �G (j; t) :

Proof. As the problem that must solved in order to �nd the upper

bound of the American derivative is a linear programming problem it is

possible to construct its dual. Let � (0; 0) ; � (i; t2) and � (i; t2) be the dual

variables associated with constraints (2), (3) and (4), respectively. Then,

the dual problem is

max
�(j;t);�(j;t)

X
t2Tm

X
(j;t)2Jt

� (j; t)G (j; t)

subject to

� (0; 0)S (0; 0) +
X

(i;t)2i+0 (t)
[� (i; t) + � (i; t)]S (i; t) = S (0; 0) (5)

� (0; 0) +
X

(i;t)2i+0 (t)
[� (i; t) + � (i; t)]Rt = 1 (6)

with t = min (s 2 Tm : s > 0) ;X
(j;t2)2i+t1 (t2)

S (j; t2) [� (j; t2) + � (j; t2)]� � (i; t1)S (i; t1) = 0 (7)

X
(j;t2)2i+t1 (t2)

[� (j; t2) + � (j; t2)]R
t2�t1 � � (i; t1) = 0 (8)

for all t1 2 Tn f0;max fs 2 Tm : s < Tg ; Tg and t2 = min (s 2 Tm : s > t1) ;
and, �nally, X

(j;T )2i+t (T )
S (j; T )� (j; T )� � (i; t)S (i; t) = 0 (9)

X
(j;T )2i+(T )

S (j; T )RT�t � � (i; t) = 0 (10)

for all t = max fs 2 Tm : s < Tg :
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Note that the constraints (5), (7) and (9) of the dual problem are as-

sociated with the variables �(0; 0) ; �(i; t1) and �(i; t) ; respectively, of

the primal problem. In a similar way, the constraints (6), (8) and (10)

are, respectively, associated with the primal variables B (0; 0) ; B (i; t1) and

B (i; t).

The constraints presented in equations (7), (8), (9) and (10) can be

rewritten such that, for all t 2 TmnT; we haveX
(j;m)2i+t (m)
m>t;m2Tm

� (j;m)Rm�tS (i; t) =
X

(j;m)2i+t (m)
m>t;m2Tm

� (j;m)S (j;m) ; (11)

From equations (6), (8) and (10) we obtainX
(i;t)
t2Tm

� (i; t)Rt = 1 (12)

Considering equations (12), (5) and (12), we have, for all (i; t) ;X
(j;m)2i+(m)
m>t;m2Tm

� (j;m)Rm�tS (i; t) =
X

(j;m)2i+(m)
m>t;m2Tm

� (j;m)S (j;m) :

Let q (i; t) = � (i; t)Rt: For any t 2 Tmn fTg ;X
(j;m)2i+(m)
m>t;m2T

q (j;m) �S (i; t) =
X

(j;m)2i+(m)
m>t;m2T

q (j;m) �S (j;m) :

Hence, the dual problem can be written as

max
q2QM

X
(i;t)2Jt
t2Tm

q (i; t) �G (i; t) :

The upper bound solving the problem above can also be seen as the

solution of a more intuitive problem. In fact, it can be shown that this upper

bound maximizes over all possible stopping times the expected discounted

payo¤, when the expectation is optimized among all adjusted probability

measures. In other words,
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Theorem 3.2 There exists an adjusted probability measure P 2 P (�) and
an adapted process X� 2 XT such that the upper hedging price of an Ameri-
can derivative in a dry market can be written as

V ud = max
�2T

max
P2P(�)

EpG� ;

with G� (i; t) = X� (i; t)G (i; t) : Additionally, if there is a probability mea-

sure with positive probability on every path then the upper hedging price of

an American derivative in a dry market can be rewritten as

V ud = max
�2T

max
P2P

EpG� ;

where G� (i; t) = X� (i; t)G (i; t) ; as before.

Proof. As Q is a convex set, the maximum of the problem

max
q2QM

X
(i;t)2Jt
t2Tm

q (i; t) �G (i; t)

is obtained at the extremes points of QM.

By theorem (2.1), we know that the extremes points are simple node

measures. Using theorem (2.2) we can rewrite the problem above as

max
�2T

max
P2P(�)

Ep �G� (13)

where

�G� (i; t) = �G (i; t)X� (i; t) :

As stressed in Chalasani and Jha (2001), page 64, if there is a martingale

measure P̂ 2 P with positive measure on every path, w; the inner maxi-

mization in (13) can be restricted to all P 2 P without a¤ecting its value.

First, any P 2 P also belongs to P (�) : Second, any measure P 2 P (�) can
be rede�ned to be a martingale measure P 0 2 P such that EP 0 �G� = EP �G� ;
as follows

P 0 (i; t) =

(
P (i; t) ; t � k : if (i; t) 2 w and � (w) = k
P 0� (i; t)

P̂ (i;t)

P̂�(i;t)
otherwise
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where P 0� (i; t) and P̂� (i; t) stand for the probabilities in the node that is

an immediate predecessor of (i; t) :

3.2 Lower bound for the Value of an American Derivative

The lower bound for the value of an American derivative is the minimum

value for which the derivative would be transacted without allowing for ar-

bitrage opportunities. In order to �nd the lower bound consider a long

position in the derivative. As stressed in Karatzas and Kou (1998) while

the seller of the American derivative has to be hedged against any possible

exercise policy, the buyer of the American derivative needs only to hedge

against a given exercise policy that is de�ned by himself. For a given exercise

policy consider the most expensive portfolio that the buyer of the American

derivative can buy in order to be fully hedged and without need of addi-

tional �nancing at any rebalancing dates. The minimum value for which the

derivative would be transacted without allowing for arbitrage opportunities

would be the value of the most expensive portfolio chosen among all the

portfolios just mentioned.

For any given stopping time � and any node (j; t); such that (j; t) is

before the exercise time, consider the portfolio constituted of �� (j; t) shares

of the underlying asset and an amount B� (j; t) invested in the risk free

asset. For each stopping time we are looking for the most expensive portfolio

that the buyer of the American derivative can buy that is self-�nanced and

is superreplicated by the payo¤s of the American derivative. A portfolio

[�� (j; t1) ; B
� (j; t1)] is said self-�nancing if, for any two consecutive trading

dates t1 and t2 > t1 and an arbitrary node (j; t1), the portfolio is such as to

generate in t2 a value �� (j; t1)S (i; t2) +B� (j; t1)Rt2�t1 such that

�� (j; t1)S (i; t2) +B
� (j; t1)R

t2�t1 � V � (i; t2) ; (14)

for any node (i; t2) 2 j+t1 (t2) before the exercise of the American derivative:
Additionally, a portfolio [�� (j; t1) ; B� (j; t1)] is said to be superreplicated
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by G� (i; t2) if, for any two consecutive trading dates t1 and t2 > t1 and

an arbitrary node (j; t1) ; it generates in t2 a value �� (j; t1)S (i; t2) +

B� (j; t1)R
t2�t1 such that

�� (j; t1)S (i; t2) +B
� (j; t1)R

t2�t1 � G� (i; t2) ; (15)

for any (i; t2) 2 j+t1 (t2) when it is optimal to the holder of the American
option to exercise it given � . The minimum value for which the derivative

would be transacted without allowing for arbitrage opportunities would be

the value of the most expensive portfolio chosen among all stopping times.

The lower bound for the value of the American derivative can thus be

seen as the solution of the following problem:

V ld = max
�2T

max
f�� (j;t);B� (j;t)g

�� (0; 0)S (0; 0) +B� (0; 0)

subject to the superreplicating constraint

�� (0; 0)S (0; 0) +B� (0; 0) � G� (0; 0) ;

if � (w) = 0 and, otherwise,

�� (j; t1)S (m; t3) +B� (j; t1)R
t3�t1 � G� (m; t3) ;

for all (j; t1) and (m; t3) such that X� (m; t3) = 1; t3 = min fs 2 Tm : s > t1g
and (m; t3) 2 j+t1 (t3); and to the self-�nancing constraints

�� (j; t1)S (i; t2) +B� (j; t1)R
t2�t1 � �� (i; t2)S (i; t2) +B� (i; t2) ;

for all (j; t1) and (i; t2) 2 j+t1 (t2) such thatX� (i; t2) = 0; t3 = min fs 2 Tm : s > t1g
and for some (m; t3) ; such that X� (m; t3) = 1; (m; t3) 2 j+t2 (t3) :

Using results from linear programming the upper bound arbitrage free

bound of the American derivative can be written as follows.
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Theorem 3.3 There exists a node probability measure q 2 Q� and a stop-
ping time � 2 T such that the lower hedging price of an American derivative
in a dry market can be written as

V ld = max
�2T

min
q2Q�

X
(j;t)

X
t2Tm

q (j; t) �G� (j; t)

with �G� (j; t) = �G (j; t)X� (j; t) and for any (i; t) and t 2 TmX
m>t; m2Tm

X
(j;m)2i+t (m)

q (j;m)
�
�S (i; t)� �S (j;m)

�
= 0:

Proof. For a given stopping time the problem that must be solved in

order to �nd the lower bound for the value of the American derivative is

max
f�(j;t);B(j;t)g (j;t)2Jt

t2T nfTg

�� (0; 0)S (0; 0) +B� (0; 0)

subject to the following superreplicating conditions

�� (0; 0)S (0; 0) +B� (0; 0) � G� (0; 0) ;

if X� (0; 0) = 1; and, otherwise,

�� (j; t1)S (i; t2) +B (j; t1)R
t2�t1 � G� (i; t2) ;

for all t1 2 Tmn fTg ; (i; t2) 2 j+ (t2) with t2 = min (s 2 Tm : s > t1), and
nodes (i; t2) such X� (i; t2) = 1:

Additionally, for any node (i; t2) ; which is a predecessor of a given node

(m; t) that satis�es X� (m; t) = 1; the self-�nancing conditions apply, i.e.,

�� (k; t1)S (i; t2) +B� (k; t1)R
t2�t1 � �� (i; t2)S (i; t2) +B (i; t2) ;

where (i; t2) 2 k+t1 (t2) and t2 = min (s 2 Tmn fTg : s > t1) :
Using an analogous procedure as in the proof where the upper bound

for the value of the American derivative was found we can write the dual

problem of the linear optimization problem described above

min
q2Q�

X
(i;t)2Jt
t2Tm

q (i; t) �G� (i; t)
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such that for any (i; t) with t 2 TmX
m>t;m2Tm

X
(j;m)2i+t (m)

q (j;m)
�
�S (i; t)� �S (j;m)

�
= 0:

Optimizing with relation to � the problem becomes

max
�2T

min
q2Q�

X
(i;t)2Jt
t2Tm

q (i; t) �G� (i; t)

such that for any (i; t) with t 2 TmX
m>t;m2Tm

X
(j;m)2i+t (m)

q (j;m)
�
�S (i; t)� �S (j;m)

�
= 0:

As for the upper bound the lower bound solving the problem above can

also be seen as the solution of a more intuitive problem. In fact, it can be

shown that this lower bound maximizes over all possible stopping times the

expected discounted payo¤, when the expectation is minimized among all

adjusted probability measures. In other words,

Theorem 3.4 There exists an adjusted probability measure P 2 P (�) and
a stopping time � 2 T such that the upper hedging price of an American
derivative in a dry market can be written as

V ld = max
�2T

min
P2P(�)

Ep�
�G�

with G� (i; t) = X� (i; t)G (i; t). Additionally, if there is a probability mea-

sure with positive probability on every path then the upper hedging price of

an American derivative in a dry market can be rewritten as

V ld = max
�2T

min
P2P

EpG�

where G� (i; t) = X� (i; t)G (i; t) ; as before.
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Proof. Using the result presented in theorem (3.3) and the theorem

(2.2) the proof is straightforward.

This resulted has already been conjectured as an extension in Harrison

and Kreps (1979). When the market is complete then P is a singleton and

the two bounds coincide with the unique arbitrage free value of the American

derivative.

In the following section the upper and lower arbitrage free bounds of

the American derivatives for the probabilistic case are derived. In the next

section, at certain dates, there is uncertainty about the existence of the

market.

4 Probabilistic Dry Markets

4.1 The model

As in the previous section we shall work in discrete time, corresponding to

dates in T = f0; 1; : : : ; Tg : Let Tm � T be a set of points in time such

that, for all times t 2 Tm; transactions are possible with probability one.
By assumption, both 0 and T belong to Tm, i.e., transactions are certainly
possible at times t = 0 and t = T . Similarly, let Tp � T be de�ned as the

set of points in time such that transactions are possible, but not certain.

For each time t 2 Tp; we assume that transactions are possible with an
exogenous probability p > 0 with Tm[T p = T and Tm\T p = ;:

We can think of the existence (or not) of the market at time t as the

realization of a random variable yt. This random variable is de�ned for

all t 2 T and it is assumed to be independent of the ordinary source of

uncertainty that generates the price process. We can therefore talk about

a market existence process. In order to construct one such process, let us

�rst start with the state space. Let #(Tp) denote the number of points in
Tp: At each of these points, market may either exist or not exist, leading
to 2#(Tp) possible states of nature. We then have the collection of possible
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states of nature denoted by 
p = fvigi=1;:::;2#(Tp) ; each vi corresponding to
a distinct state. Recall that 
 denotes the set of paths (w) in a perfectly

liquid market and Ft is the �-algebra generated by the random variable St:

We now consider the new extended measurable space
�
�
; �F

�
; where

�
 = 
� 
p

and

�F = F � Fp;

with Fp = Fp0 ; F
p
1 ; : : : ; F

p
T ; where F

p
t is the �-algebra generated by the

random variable yt. The random variable yt assumes the values 0 (when

there is no market) and 1 (when there is market) and is not dependent on

w: Note also that the variable yt depends only on the information in Fp. Let
py be the probability associated with the random variable yt: For all t 2 Tp;
we have py (yt = 1) = p and py (yt = 0) = 1 � p: Similarly, for all t 2 Tm;
py (yt = 1) = 1 and py (yt = 0) = 0: Let the T + 1 dimensional vector y

denote a given realization of the process fytgt2T . There are 2#(Tp) di¤erent
possible vectors y.

As in section 2.1, the process followed by the stock price is denoted by S:

However, in the presence of probabilistic dry markets the stock price is only

observed when market exists, i.e., in all nodes (i; t) such that y (i; t) = 1:

As a motivation to what follows, let us consider an example. Consider

Tm = f0; 2; 4g and Tp = f1; 3g : At t = 1 there is a (1� p) chance that
the stock price will not be observed. The same thing happens at t = 3:

Hence, if there is no new information at these points in time, the �-algebra

describing the information available to the market will be Ft = Ft�1: In our
example, there are four di¤erent vectors y, given by y1 = (1; 1; 1; 1; 1) ;y2 =

(1; 0; 1; 1; 1) ; y3 = (1; 1; 1; 0; 1) and y4 = (1; 0; 1; 0; 1) : Each one is associated

with a given probability, respectively, p2; p (1� p) ; p (1� p) and (1� p)2.
We may describe the trees of information process associated to each of the
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four possible circumstances as follows

0 1 2 3 4

With probability p2

0 1 2 3 4

With probability p(1­p)

0 1 2 3 4

With probability p(1­p)

0 1 2 3 4

With probability (1­p)2

0 1 2 3 4

With probability p2

0 1 2 3 4

With probability p2

0 1 2 3 4

With probability p(1­p)

0 1 2 3 4

With probability p(1­p)

0 1 2 3 4

With probability p(1­p)

0 1 2 3 4

With probability (1­p)2

Figure 1: For each y the information available to the market can be repre-
sented by a di¤erent tree.

The �rst tree (top, left) describes the case corresponding to vector y1;

where market exists at all points in time, coinciding with the perfectly liquid

market tree. The second tree (top, right) re�ects the second case, corre-

sponding to vector y2; where market does not exist only at t = 1: We could

have drawn a tree with four branches going directly from the node at t = 0 to

the corresponding four nodes at t = 2: We prefer the representation above,

since we want to make clear that the �ltration F1 re�ecting the information
available at t = 1 is the same as the �ltration F0 re�ecting the information
available at t = 0: In a similar way we have a tree representing the vector

y3 (low, left) and another one for the vector y4 (low, right). However, if we

want to describe all the possible situations in the same tree it will look like

the one described below

This super-tree plays a main role in the construction of our superhedg-
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0 1 2 430 1 2 43

Figure 2: This tree describes all the possibilities under probabilistic illiquid-
ity at t = 1 and t = 3: The circles identify the nodes when it is not possible
to transact. In the �nal nodes identi�ed with arrows the stock price is the
same.
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ing strategies. Actually, our extended �ltration will work as if we have an

extended tree, coinciding with the one above, where transactions would not

be permitted at those nodes represented by open circles. We stress the point

that nodes in this tree do not represent mere price realizations. They are

rather joint representations of the price process and the market existence

process. For instance, the terminal nodes indicated with arrows in the �g-

ure are assumed to represent the same price level for the underlying asset,

but with di¤erent market existence realizations.

We now focus on the construction of the superreplicating strategies for

probabilistic dry markets. At any point in time, the number of shares and

the amount invested in the risk-free asset will depend on the existence, or

inexistence, of the market at the previous moments in time. However, these

values will not depend on the future existence of the market.

Let �(j; t;y) and B (j; t;y) denote, respectively, the number of shares

and the amount invested in the risk free asset at node (j; t) for a given

realization, y, of the process fysgs2T . We assume that, if yt = 0 and (j; t)
is an arbitrary successor of (i; t� 1) ; then �(j; t;y) = � (i; t� 1;y) and
B (j; t;y) = B (i; t� 1;y) ; since the portfolio can not be rebalanced at time
t. Hence, for any given two di¤erent sets y1 and y2 with common values

y11 = y
2
1; y

1
2 = y

2
2; y

1
3 = y

2
3; : : : up to time t; we assume that

�
�
j; t;y1

�
= �

�
j; t;y2

�
and B

�
j; t;y1

�
= B

�
j; t;y2

�
:

Just as in the deterministic case, let V (j; t;y) denote the value process

generated by such portfolio [� (j; t;y) ; B (j; t;y)], i.e.,

V (j; t;y) = � (j; t;y)S (j; t) +B (j; t;y) :

Hence,

V
�
j; s;y1

�
= V

�
j; s;y2

�
:

In an analogous way to the deterministic case, the de�nition of self-�nanced
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strategy and superreplicating strategy is dependent on whether one is in a

short or in a long position in the derivative.

In what follows we are going to characterize the upper and lower arbitrage-

free bounds for the value of an American derivative in the probabilistic case.

4.2 Some Probabilistic De�nitions

Analogously to what we did in section 2.1, we present some mathematical

tools to obtain the arbitrage-free bounds of the American derivative.

We begin by de�ning Ty as the subset of points in T after the last non-

trading date. Formally we de�ne Ty = fs 2 T : s � �(y)g with

�(y) =

�
0 if yt = 1;8t 2 T ,
max (m+ 1 : ym = 0) otherwise.

Notice that for liquid markets Ty = T .

De�nition 4.1 A node probability measure is a nonnegative function

q (i; t;y) satisfying X
(j;t)

X
t2Ty

X
y
q (j; t;y) = 1: (16)

Let Q (y) denote the set of all node probability measures q (i; t;y).

De�nition 4.2 A node probability measure q 2 Q (y) is said to be a node
martingale measure if, for any y and (i; t) such that t 2 Ty; satis�esX

fz:z0=y0;:::;zt=ytg

X
�>t
�2Tz

X
(j;�)2i+t (�)

q (j; � ; z) �S (i; t)

=
X

fz:z0=y0;:::;zt=ytg

X
�>t
�2Tz

X
(j;�)2i+t (�)

q (j; � ; z) �S (j; �) ;

The set of all node martingale measures is denoted by QMy .

De�nition 4.3 A node probability measure on the event tree is said to be

y-simple if, for each y, any t and t+ k 2 Ty, there are no two nodes in the
same path, say (i; t) and (j; t+ k) 2 i+t (t+ k) ; such that q (i; t;y) > 0 and
q (j; t+ k; _y) > 0 where _y is any set such that y1 = _y1; : : : ; yt = _yt:
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The following theorem is analogous to theorem 2.1 but now in the frame-

work of probabilistic dry markets.

Theorem 4.1 (Chalasani and Jha) The extreme points of the set QMy
are simple node probability measures, i.e., on every path on the event tree

there is at most one node where q is strictly positive.

The proof of this theorem follows closely the proof of theorem 2.1.

De�nition 4.4 An adjusted probability measure is a nonnegative func-

tion p (i; t;y) de�ned for any y and (i; t) with t 2 Ty such that p (0; 0) =
p (0; 0;y) = 1 and

p (i; t;y) =
X

(j;s)2i+t (s)

X
fz:z0=y0;:::;zt=ytg

p (j; s; z) ;

with s =min fn 2 Tz : yn = 1 and n > tg :

Let the set of all probability measures be denoted by Py. Also, let

�y denote an ordinary stopping time that is conditional on the realization

of the process fytgt2T . For any y; �y is a map that is de�ned from 
 to

fs 2 T : ys = 1g such that fw : � (w;y) � tg 2 Ft for all t 2 fs 2 T : ys = 1g :
Moreover, consider that for two di¤erent sets y1 and y2 with common val-

ues y11 = y
2
1; y

1
2 = y

2
2; : : : ; up to time t; if �

�
w;y1

�
= s; where s = 0; : : : ; t;

then �
�
w;y2

�
= s: A set of stopping times, one for each y, satisfying the

abovementioned property is denoted by �Y ; i.e.,

�Y = f�yg
y�
n
y1;:::; y2

#(Tp)
o :

Consider (i; k) 2 w:We de�ne a nonnegative adapted processX�;y associated
with the stopping time that has the form X� [i; k;y] = 1 if � (w;y) = k and

X� [i; k;y] = 0 otherwise. Let Ty and XT;y denote the set of all �y and

associated X� (y), respectively.
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De�nition 4.5 A y-simple node probability measure is said to be associated

with a given stopping time if q (i; t;y) is equal to zero when X� (i; t;y) is

equal to zero, and q (i; t;y) is positive when X� (i; k;y) is strictly positive,

for any y and node (i; t).

Let the set of all node probability measures with this property be denoted

by Q� (y).

De�nition 4.6 For any probability measure Py 2 Py and stopping time

�y 2 Ty we say that Py is a �y-martingale measure if, Py-almost surely,
for any (i; t) and y such that yt = 1 we haveX
(j;s)2i+(s)

X
s>t;s2Tz

X
fz:z0=y0;:::;zt=ytg

p (j; s; z)X� (j; s; z)
�
�S (i; t)� �S (j; s)

�
= 0

The set of all Py that have this property is denoted by Py (�y)
Let (Py; X�;y) denote a measure-strategy pair, i.e., a pair constituted by

an adjusted probability measure and a nonnegative adapted process.

De�nition 4.7 A measure-strategy pair (Py; X�;y) is said to be equivalent

to a node probability measure if, for any given node (i; t) with t 2 Ty;
p (i; t;y)X� (i; t;y) = q (i; t;y) :

We can now enunciate the following result, adapted from Chalasani and

Jha (2001) to include the random variable y.

Theorem 4.2 Consider a node probability measure q 2 Q (y) : Then there
exists a measure-strategy pair (Py; �y) equivalent to q, where for any given

y; Py and �y are uniquely de�ned at node (i; t) where

q (i; t;y) +
X

(j;s)2i+(s)

X
s>t;s2Tz

X
fz:z0=y0;:::;zt=ytg

q (j; s; z)

is strictly positive. Conversely, if (Py; �y) is a measure strategy-pair, then

the node function q 2 Q (y) such that q (i; t;y) = p (i; t;y)X (i; t;y) is the
unique equivalent node-measure.
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Proof. The proof of this theorem is a modi�cation of the one provided

in Chalasani and Jha (2001) and analogous to the one of theorem (2.2).

All the mathematical de�nitions provided above are dependent of y. In

what follows we will shown that it is possible to de�ne an adjusted prob-

ability and a randomized stopping time in the original tree that is closely

related with the concepts just presented.

De�nition 4.8 An adjusted probability measure �P (i; t) is a nonnega-

tive function such that �P (0; 0) = 1 and �P (i; t) =
P
(j;t+1)2i+t

�P (j; t+ 1), for

all t 2 T .

The set of all probability measures �P is denoted by �P.

A randomized stopping time is a nonnegative adapted process X with

the property that on every path of the event tree the sum of the random

variable is equal to one, i.e.,X
t2T

X (it; t) = 1 (17)

where it+1 2 i+t : The set of all randomized stopping time is denoted by X:

De�nition 4.9 For a given randomized stopping time X 2 X; an adjusted
probability measure �P 2 �P is said to be a Xy-martingale measure if there
are a stopping time X� (y) 2 XT;y and a �y-martingale measure Py 2 Py (�y)
such that

X (i; t) �P (i; t) =
X

fy:yt=1g
p (i; t;y)X� (i; t;y)

for any (i; t) with t 2 T .

Let �P (Xy) denote the set of all �P that are Xy martingale measures.

Theorem 4.3 For any given stopping time X� (y) 2 XT;y and �y-martingale
measure Py 2 Py (�y) ; there is a randomized stopping time X 2 X and a
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Xy-martingale measure �P ; which are de�ned as follows. Just for notation,

let us consider

� (i; t) =
X

r�t

X
fz:zt=1g

p (i; r; z)X� (i; r; z) +X
r�s

X
(j;s)2i+t�1

X
fz:zt 6=1g

p (j; r; z)X� (j; r; z) ;

with s = min fr 2 T : r > t and X� (j; r; z) = 1g :
The adjusted probability measure is such that �P (0; 0) = 1 and, for any

(i; t) 2 j+t�1 (t) such that � (j; t� 1) 6= 0,

�P (i; t) = �P (j; t� 1) � (i; t)P
(i;t)2j+t�1(t)

� (i; t)
:

If
P
(i;t)2j+t�1(t)

� (i; t) = 0 then �P (i; t) = �P (j; t � 1) for a given successor
(i; t) of (j; t� 1) and zero for all others successors of (j; t� 1):

The randomized stopping time X 2 X is uniquely de�ned for any node

(i; t) such that �P (i; t) 6= 0 and is given by

X (i; t) =

P
fy:yt=1g p (i; t;y)X� (i; t;y)

�P (i; t)
:

If �P (i; t) = 0 but there is a predecessor (k; t� 1) such that �P (k; t � 1) 6= 0
take

X (i; t) =

P
(i;t)2k+t�1(t)

� (i; t)

�P (k; t� 1)
:

Otherwise, X (i; t) = 0:

Proof. See appendix B.

5 Results on Probabilistic Dry Markets

5.1 Upper bound for the Value of an American Derivative

The upper bound for the value of an American derivative is the maximum

value for which the derivative would be transacted without allowing for ar-

bitrage opportunities. As described in the deterministic case, in order to

29



�nd the upper bound consider a short position in the derivative. The max-

imum value for which the derivative would be transacted without allowing

for arbitrage opportunities would be the value of the cheapest self-�nanced

portfolio that the buyer of the derivative can buy in order to completely

hedge against any possibility of exercise of the American derivative.

A strategy is said to be a self-�nanced strategy if for any given y the

portfolio at node (j; t1) ; where t1 2 ft 2 T : yt = 1g ; generates in t2 a value
�(j; t1;y)S (i; t2) +B (j; t1;y)R

t2�t1 such that

�(j; t1;y)S (i; t2) +B (j; t1;y)R
t2�t1 � V (i; t2;y) ; (18)

with (i; t2) 2 j+t1 (t2) and t2=min fs 2 T : s > t and ys = 1g :
A sequence of portfolios f[� (j; t;y) ; B (j; t;y)]gt2T , one for each y; is

said to be a superreplicating strategy if the value of each portfolio is higher

than or equal to the payo¤ of the derivative at any node in the next trans-

action time. In other words, for any trading dates t1 and t2 such that

t1 2 ft 2 T : yt = 1g and t2=min ft 2 T : t > t1 and yt = 1g and arbitrary
nodes, (j; t1) and (i; t2) 2 j+t1 (t2) ; the portfolio at t1, [� (j; t1;y) ; B (j; t1;y)] ;
must be such as to generate in t2 a value�(j; t1;y)S (i; t2)+B (j; t1;y)Rt2�t1

such that

�(j; t1;y)S (i; t2) +B (j; t1;y)R
t2�t1 � G (i; t2) : (19)

Since it is the cheapest initial portfolio, the upper bound V up must satisfy

V up = minV (0; 0):

The decision variables are the �(j; t;y) and B (j; t;y) for all non-terminal

nodes of the event tree. However, this optimization is subject to the con-

straints of self-�nancing (18) and superreplication (19).

More formally, for any given y take any t1 2 T such that yt1 = 1. De�ne
the consecutive trading date t2 as t2 = min (s 2 T : s > t1 and ys = 1) : The
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upper bound for the value of the American derivative can thus be seen as

the solution of the following problem:

V up = min
f�(j;t;y);B(j;t;y)gt2fs2T :ys=1gnfTg

�(0; 0)S (0; 0) +B (0; 0)

subject to the superreplicating constraints:

�(0; 0)S (0; 0) +B (0; 0) � G (0; 0) ; (20)

�(j; t1;y)S (i; t2) +B (j; t1;y)R
t2�t1 � G (i; t2) ; (21)

and subject to the self-�nancing constraints:

�(j; t1;y)S (i; t2) +B (j; t1;y)R
t2�t1 � �(i; t2;y)S (i; t2) +B (i; t2;y)

(22)

for any (i; t2) 2 j+t1 (t2) :
Using results from linear programming the upper bound arbitrage free

bound of the American derivative can be written as follows.

Theorem 5.1 There is a node probability measure q 2 Q (y) such that the
upper hedging price of an American derivative in a probabilistic dry market

can be written as

V up = max
q2QMy

X
(j;t)

X
t2Ty

X
y
q (j; t;y) �G (j; t) :

Proof. This proof follows the methodology used in theorem (3.2). As

the upper bound for the value of the American derivative, V up ; is the solu-

tion of linear programming problem it is possible to construct its dual. Let

� (0; 0) ; � (i; t2;y) and 
 (i; t2;y) denote the dual variables that are asso-

ciated, respectively, with the constraints (20), (21) and (22) of the primal

problem. Note that, as we assume that given two di¤erent sets y1 and y2

with common values y11 = y
2
1; y

1
2 = y

2
2; y

1
3 = y

2
3; : : : up to time t1; the portfolio

will be the same, i.e.,

�
�
j; t1;y

1
�
= �

�
j; t1;y

2
�
and B

�
j; t1;y

1
�
= B

�
j; t1;y

2
�
:
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Then, �
�
i; t2;y

1
�
= �

�
i; t2;y

2
�
for all (i; t2) 2 i+t1 (t2) : Before presenting

the dual problem let de�ne

�t= fy :yt = 1 and min [s 2 Ty : s > t] = min [s 2 T : ys = 1 and s > t]g :

The dual problem is given by

max
q2Q(y)

X
(j;t)

X
t2Ty

X
y
� (j; t;y)G (j; t)

subject to the conditions:

� (0; 0)S (0; 0)+
X

(j;s)2i+0 (t)

X
z2�0

[� (j; t; z) + 
 (j; t; z)]S (j; t) = S (0; 0) ;

(23)

� (0; 0) +
X

(j;s)2i+0 (t)

X
z2�0

[� (j; t; z) + 
 (j; t; z)]Rt = 1 (24)

where t = min fs 2 Tz : s > 0g.
For any (i; t) and y such that t 2 Tyn f0;max [r 2 Ty and r < T ] ; Tg ;X
(j;s)2i+t (s)

X
z2�t

[� (j; s; z) + 
 (j; s; z)]S (j; s) = 
 (i; t;y)S (i; t) (25)

and X
(j;s)2i+t (s)

X
z2�t

[� (j; s; z) + 
 (j; s; z)]Rs�t = 
 (i; t;y) (26)

where s = min fr 2 Tz : r > tg : Finally, for any (i; t) and y such that t =
max fr 2 Ty and r < TgX

(j;T )2i+t (T )

X
z2�t

� (j; T ; z)S (j; T )� 
 (i; t;y)S (i; t) = 0 (27)

and X
(j;T )2i+t (T )

X
z2�t

� (j; T ; z)RT�t � 
 (i; t;y) = 0 (28)

The constraints presented in equations (25) and (27) can be rewritten as

S (i; t) 
 (i; t) =
X

r�s

X
(j;r)2i+t (r)

X
z2�t

� (j; r; z)S (j; r)
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and the constraints presented in equations (26) and (28) can be rewritten

as


 (i; t) =
X

r�s

X
(j;s)2i+t (s)

X
z2�t

� (j; r; z)Rr�t:

for all (i; t), t 2 T n f0; Tg and with s = min fr 2 Tz : r > tg : The two
previous equations can be written as

S (i; t)
X

r�s

X
(j;s)2i+t (s)

X
z2�t

� (j; r; z)Rr�t

=
X

r�s

X
(j;s)2i+t (s)

X
z2�t

� (j; r; z)S (j; r)

Taking into account equations (23) and (24) we obtain, for all t 2 T n fTg

S (i; t)
X

r�s

X
(j;s)2i+t (s)

X
z2�t

� (j; r; z)Rr�t

=
X

r�s

X
(j;s)2i+t (s)

X
z2�t

� (j; r; z)S (j; r)

with X
t2Ty

X
(j;t)

X
y
� (j; t;y)Rt = 1:

Let q (i; t;y) = � (i; t;y)Rt: Then,

�S (i; t)
X

r�s

X
(j;s)2i+t (s)

X
z2�t

� (j; r; z)Rr�t

=
X

r�s

X
(j;s)2i+t (s)

X
z2�t

� (j; r; z) �S (j; r)

and X
t2Ty

X
(j;t)

X
y
q (j; t;y) = 1:

The upper bound solving the problem above can also be seen as the

solution of a more intuitive problem. In fact, it can be shown that this upper

bound maximizes over all possible stopping times the expected discounted

payo¤, when the expectation is optimized among all adjusted probability

measures. In other words,
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Theorem 5.2 There is an adjusted probability measure Py 2 Py (�y) and
an adapted process X�;y 2 XT;y such that the upper hedging price of an

American derivative in a probabilistic dry market can be written as

V up = max
X�;y2XT;y

max
Py2Py(�y)

E �pGX�;y

where GX�;y (i; t) = G (i; t)X�;y (i; t)

Proof. In an analogous way to the proof of theorem (3.2), using theorem

(4.1) and theorem (4.2) the conclusion is straightforward.

Note that this result is the same that would be obtained if the �ltration

that describes the stock price is an augmented one, in the spirit of the one

presented in �gure (2), with no uncertainty about the existence of the market

and no transactions in some nodes (the ones identi�ed in the �gure). And,

using this �ltration, we found out that ordinary stopping times are enough

to write the upper bound as an expectation.

However, the upper bound of the value of an American derivative can

also be written using randomized stopping times if an adjusted probability

measure with an additional characteristic is considered. The adjusted prob-

ability measure have to be decomposed in such a way that if an augmented

�ltration is considered the stock price is a martingale.

If the initial �ltration is considered it is not possible to write the upper

bound as an optimization over ordinary stopping times, as in theorem (5.2).

In this case, randomized stopping times may be needed.

Theorem 5.3 There is an adjusted probability measure �P 2 �P (Xy) and a
process X 2 X such that the upper hedging price of an American derivative
in a probabilistic dry market can be written as

V up = max
X2X

max
�P2 �P(Xy)

E �pGX

with GX(i; t) = G (i; t)X (i; t) :
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Proof. In order to prove that the optimum value determined by the

optimization problems in Theorem 5.3 coincide with the one presented in

Theorem 5.2, we begin by noticing that

X (i; t) �P (i; t) =
P
fy:yt=1g p (i; t;y)X� (i; t;y)

)P
t2T

P
(i;t)2Jt X (i; t)

�P (i; t)G (i; t) =

=
P
t2Ty

P
(i;t)2Jt

P
y p (i; t;y)X� (i; t;y)G (i; t)

,
E
�PGX = E

PyGX�;y :

(29)

Then, we establish a relation between the two sets over which the opti-

mization problems presented in the two theorems are performed. In or-

der to establish this relation, we begin by considering an element Py of

[X�;y2XT;yPy (�y) : By theorem 4.3 and the implication presented in equa-

tions (29), for any element Py of [X�;y2XT;yPy (�y) ;there exists an element �P
that belongs to [X2X �P (Xy) ; such that E

�PGX = E
PyGX�;y : Now, consider

an element of [X2X �P (Xy) : By the de�nition of a Xy-martingale measure
and, once again, by the relation presented in equations (29), for any element

�P in [X2X �P (Xy) there exists an element Py in [X�;y2XT;yPy (�y) such that
E
�PGX = E

PyGX�;y : Hence, given the relation established between the two

sets the values determined by the two optimization problems coincide..

In what follows we are going to consider an example. The upper bound of

the American derivative is obtained using the primal and the dual problem.

In this example no optimal pure stopping time exists that maximizes the

expected value of the payo¤s of the American derivative. The expected value

of the payo¤s of the American derivative is maximized with randomized

stopping times.

Consider T = f0; 1; 2g ; T = f0; 2g and Tp = f1g : Let R = 1 and the

uncertainty about the price of the underlying stock and the derivative be

given by

There are two sets y, y1 = f1; 1; 1g and y2 = f1; 0; 1g : The optimum
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S0=3
G0=0

S1=2
G1=5

S2=4
G2=8

S0=3
G0=0

S1=2
G1=5

S2=4
G2=8

Figure 3: The evolution of the price of the underlying asset and the deriva-
tive´s payo¤.

value of the variables in the primal problem is

�(0; 0;y1) = � (0; 0;y2) = � (0; 0) = 1; 5
B (0; 0;y1) = B (0; 0;y2) = B (0; 0) = 2
� (0; 1;y1) = 2; 5
B (0; 1;y1) = 0

that results in an optimum value of the function

�(0; 0)S (0; 0) +B (0; 0) = 6; 5:

In what concerns the dual problem the optimum value of the variables

q (0; 0) = q (0; 0;y1) = q (0; 0;y2) = 0
q (0; 1) = q (0; 1;y1) = 0:5
q (0; 2) = q (0; 2;y1) + q (0; 2;y2) = 0 + 0:5 = 0:5

As a result, the optimum value of the objective function is

q (0; 1)G (0; 1) + q (0; 2)G (0; 2) = 6:5:

In this case the probability measure Py is given by

py (0; 0) = 1
py (0; 1;y1) = 1 � 0:5

0:5+0:5 = 0:5

py (0; 2;y1) = 0:5
py (0; 2;y2) = 0:5

and the stopping time �y is such that X� is given by

X� (0; 0) = 0
X� (0; 1;y1) = 1
X� (0; 2;y1) = 0
X� (0; 2;y2) = 1
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The probability measure �P is

P (0; 0) = P (0; 1) = P (0; 2) = 1

and the randomized stopping time X

X (0; 0) = 0
X (0; 1) = 0:5
X (0; 2) = 0:5

As described in the example, the use of the randomized or ordinary

stopping times is closed related to the �ltration that is being used.

The point that explains the di¤erence between our result and that of

Chalasani and Jha (2001) is the following. Under no transaction costs and

complete markets, there is only one node per path such that the value of the

superhedging portfolio fully replicates the derivative�s payo¤. This unique

node per path would correspond to the optimal exercise of the derivative.

In the setting of Chalasani and Jha (2001), rebalancing the superhedging

portfolio is possible at any point in time, and the derivatives have well

de�ned payo¤s at any point in time. However, due to transaction costs,

it may be optimal for their problem not to rebalance at some points in

time. The cheapest superhedging strategy could then be to replicate the

derivative�s payo¤ in consecutive points in time, for a given path. These

points with full replication correspond to optimal stopping. Since there may

be more than one per path, the optimal stopping time would be randomized.

In our case it is not possible to exercise the derivative when there is

no market for the underlying asset, and hence there is no need to hedge for

exercise at those points where it is not possible to rebalance the portfolio. In

particular, in the case of probabilistic dry markets, our representation of the

superreplicating bounds with deterministic stopping times is strongly driven

by the fact that we consider the enlarged �ltration resulting from the price

process and the market-existence process. This enlarged �ltration allows for
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at most one node, per path, such that the value of the superhedging portfolio

fully replicates the derivative�s payo¤, avoiding this way the randomized

stopping times. If that were not the case, the resulting stopping times could

also be randomized. In fact, had we considered only the �ltration generated

by the price process, for any given price path it could be optimal fully

replicate the derivative�s payo¤ at di¤erent moments in time.

5.2 Lower bound for the Value of an American Derivative

The lower bound for the value of an American derivative is the minimum

value for which the derivative would be transacted without allowing for ar-

bitrage opportunities. As in the deterministic case, in order to �nd the

lower bound consider a long position in the derivative. For a given exercise

policy consider the most expensive self-�nanced portfolio that the buyer of

the American derivative can buy in order to be fully hedged. The minimum

value for which the derivative would be transacted without allowing for ar-

bitrage opportunities would be the value of most expensive portfolio chosen

among all the portfolios just mentioned.

For any given stopping time �y consider any node (j; t); such that (j; t)

is a predecessor of (k;m); with X� (k;m;y) = 1: Let the set of (k;m) and

all its predecessors be denoted by J��y ; i.e.,

J��y = f(j; t) : (j; t) is a predecessor of (k;m);with X� (k;m;y) = 1g

[ f(k;m) : X� (k;m;y) = 1g :

For any given stopping time �y consider the portfolio constituted of

��y (j; t;y) shares of the underlying asset and an amount B�y (j; t;y) in-

vested in the risk free asset, with (j; t) 2 J��y : Note that if yt = 0 and (j; t) is
an arbitrary successor of (i; t� 1) ; then ��y (j; t;y) = ��y (i; t� 1;y) and
B�y (j; t;y) = B�y (i; t� 1;y) ; since the portfolio can not be rebalanced at
time t. Moreover, for any given two di¤erent sets y1 and y2 with common
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values y11 = y
2
1; y

1
2 = y

2
2; y

1
3 = y

2
3; : : : up to time t; it was assumed that

��y
�
j; t;y1

�
= ��y

�
j; t;y2

�
and B�y

�
j; t;y1

�
= B�y

�
j; t;y2

�
:

The value process of the portfolio [��y (j; t;y) ; B�y (j; t;y)] is given by

V �y (i; t2;y) = �
�y (i; t2;y)S (i; t2) +B

�y (i; t2;y) :

For each �y consider the set of portfolios [��y (j; t;y) ; B�y (j; t;y)]8(j;t)2J��y
,

one for each node that is a predecessor of the node where X� is equal to

one. Let it be denoted by [��y ; B�y ] ; i.e.,

[��y ; B�y ] = [��y (j; t;y) ; B�y (j; t;y)]8(j;t)2J��y
:

The set of these set of portfolios, one for each �y 2 �Y be denoted by

[��Y ; B�Y ] ; i.e.,

[��Y ; B�Y ] = [��y (j; t;y) ; B�y (j; t;y)]8(j;t)2J��y ;�y2�Y
:

For a long position in the derivative, a set of portfolios that belongs to

[��Y ; B�Y ] is said to be a self-�nanced strategy if for any nodes (j; t1) and

(i; t2) that are predecessors of the node (m; t3) ; such that X� (m; t3) = 1;

��y (j; t1;y)S (i; t2) +B
�y (j; t1;y)R

t2�t1 � V �y (i; t2;y) ; (30)

with t1 2 ft 2 T : yt = 1g ; t2=min fs 2 T : s > t1 and ys = 1g and (i; t2) 2
j+t1 (t2) :

A set of portfolios that belongs to [��Y ; B�Y ] ; is said to be a superrepli-

cating strategy if the value of each portfolio is lower than or equal to the

payo¤ of the derivative at any node in the next transaction time. In other

words, for any trading dates t1 and t2 such that t1 2 ft 2 T : yt = 1g and
t2=min ft 2 T : t > t1 and yt = 1g and arbitrary nodes, (j; t1) and (i; t2) 2
j+t1 (t2) such thatX� (i; t2) = 1; the portfolio at t1, [�

� (j; t1;y) ; B
� (j; t1;y)] ;

must be such as to generate in t2 a value such that

��y (j; t1;y)S (i; t2) +B
�y (j; t1;y)R

t2�t1 � G (i; t2) : (31)
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For each �Y consider the most expensive portfolio that is self-�nancing

and superreplicating, i.e., the most expensive portfolio that respects condi-

tions (30) and (31), respectively. Let this portfolio be denoted by V
�
Y

l;p : The

lower bound V lp must satisfy

V lp = max�
Y

V
�
Y

l;p (0; 0):

More formally, the lower bound for the value of the American derivative

can thus be seen as the solution of the following problem:

V lp = max�
Y

max
f[��y (j;t;y);B�y (j;t;y)]g

(j;t)2J��y
�[��Y ;B�Y ]

��y (0; 0)S (0; 0)+B�y (0; 0)

subject to the superreplicating constraint

��y (0; 0)S (0; 0) +B�y (0; 0) � G (0; 0) ;

if X�y (0; 0) = 1: However, if X�y (0; 0) = 0; the superreplication condition

is de�ned for any node (i; t2) such that X (i; t2) = 1; and is given by

��y (j; t1)S (i; t2) +B
�y (j; t1)R

t2�t1 � G (i; t2) ;

for any t1 2 Tmn fTg such that (i; t2) 2 j+ (t2) and t2 = min (s 2 Tm : s > t1) :
Additionally, for any node (m; t3) such that X�y (m; t3) = 1 the self-

�nancing conditions apply, i.e.,

��y (j; t1;y)S (i; t2) +B
�y (j; t1;y)R

t2�t1 � V �y (i; t2;y) ;

for any (i; t2) such that (m; t3) 2 i+t2 (t3), for any (j; t1) such that (i; t2) 2
j+t1 (t2) with t1 2 ft 2 T : yt = 1g and t2=min fs 2 T : s > t1 and ys = 1g :

Let us consider the worse scenario in what concerns the existence of the

market, that is, the situation that corresponds to the y with the highest

number of zeros. This situation corresponds to deterministic dryness. Let

this y be denoted by yd:
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Theorem 5.4 The lower hedging price of an American derivative in a prob-

abilistic dry market coincides with the one of the deterministic case.

Proof. The restrictions of the maximization problem that must be

solved to �nd the lower bound in the deterministic case are a subset of the

ones presented in the probabilistic case. The restriction of the determinis-

tic case corresponds to y = yd; in the probabilistic case, for any possible

�Y : Therefore, V
l
d � V lp : Moreover, as the solution of the deterministic case

respects the restrictions of the probabilistic case V ld = V lp : It corresponds

to choose, for any (j; t) 2 J��y ; �yi = �yd , �
�y (j; t;y) = ��yd (0; 0;yd) and

B�y (j; t;y) = B�yd (0; 0;yd) :

6 Comparison of the Results

In this section we will compare the arbitrage-free bounds of an American

derivative in a deterministic dry market, in a probabilistic dry market and

in a market where transactions are possible at any point in time. In other

words, we will compare the arbitrage-free bounds of an American derivative

if, at some given points in time, transactions are not possible, transactions

are possible with a given probability and transactions are certain.

The upper bound in a probabilistic dry market is higher than or equal to

the upper bound if the market is dry in the deterministic sense. Moreover, it

is also equal to or higher than the upper bound if transactions were possible

at all points in time (V u). The reason is that we are using the pure arbitrage-

free concept. If, at a given point in time, it becomes possible to transact

with a given probability, the seller of the American derivative must hedge

against the possibility of exercise at that point in time. The value of the

probability is irrelevant because he will hedge against the worse scenario.

In what concerns the upper bound in a deterministic dry market it can be

smaller or higher than the upper bound if transactions were possible at all
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points in time. The reason for this is quite intuitive. Consider an American

derivative with a very high payo¤ in a given moment where transactions

were not possible due to the deterministic dryness. If transactions were

possible at that given moment in time, the value of the American derivative

could increase to become higher than the upper bound in a deterministic

dry market. Summing up, V up � V ud ; V up � V u and V ud 7 V u.
The lower bound in a probabilistic dry market is equal to the lower bound

if the market is dry in the deterministic sense. Moreover, it is also lower

than or equal to the lower bound if transactions were possible at all points

in time (V l). The reason is as follows. The lower bound is the value of the

most expensive portfolio that is self-�nanced and superreplicates the payo¤s

of the derivative that is being bought, i.e., at the exercise date its value is

smaller than, or equal to, the payo¤ of the derivative that we are receiv-

ing. If a given point is not possible to transact and then becomes possible

to transact with a given probability several constraints, which concern the

exercise at this additional date, are added to the problem that characterizes

the lower bound. Hence, V lp � V ld : However, as the solution of the deter-

ministic case is a possible solution of the probabilistic case we conclude that

V lp = V
l
d : In what concerns the comparison with the case where transactions

are possible at all points in time we have V lp 7 V l: The reason is that the

constraints of the problem that characterizes the lower bound when trans-

actions are possible at all points in time are a subset of the ones presented

in the probabilistic case.

If the market is incomplete even with the existence of transactions at all

points in time it is not possible to �nd a unique arbitrage free value for the

American derivative. However, it is also possible to establish an arbitrage

free range of variation for the value of the American derivative. This range

will be a subset of the arbitrage free range of variation for the value of the

American derivative in the case of probabilistic dryness, but may not be a
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subset of the arbitrage free range of variation in the deterministic case.

Considering that the only source of incompleteness in the market is the

non-existence, or the possibility of non-existence, of the market at some

points in time. If transactions were possible at all points in time, markets

would be complete and there would be a unique arbitrage-free value for any

American derivative. We found out that this unique arbitrage-free value for

each American derivative belongs to the arbitrage-free range of variation for

its value under a probabilistic dry market. However, it may not belong to

the arbitrage-free range if a deterministic dry market is considered.

7 Exercise Policy

In order to understand the optimal exercise policy, we start presenting the

case of a complete market, followed by the case of incomplete markets.

7.1 Complete Markets

In the case of complete markets, the value of an American derivative is given

by

V u = max
�2T

max
P2P

EpG� (32)

where G� (i; t) = X� (i; t)G (i; t) ; as before.

If the solution is unique, the stopping time that solves (32) is the optimal

exercise policy for the holder of the American derivative.

Let us analyze this result in some detail. Given an optimal stopping

time ��, we may de�ne a stopping time frontier as follows.

De�nition 7.1 A stopping time frontier is the set of nodes (i; t) such that

X�� (i; t) = 1.

Recalling that there is an optimal stopping node for each possible path2,

2 If the solution is unique, there is a unique strictly positive q associated to each path.
Hence, the stopping time is uniquely de�ned.
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we de�ne the interior of the stopping time frontier as follows.

De�nition 7.2 The interior of the stopping time frontier is the set of pre-

decessors of the stopping time frontier.

It follows that no rational agent exercises the American derivative at a

node inside the stopping time frontier, because at such nodes, the American

derivative is worth more than the corresponding exercise. A rational agent

would exercise the American derivative whenever the stopping time frontier

is reached. This happens because the derivative�s payo¤ at that point is

larger than the cost of a replicating portfolio, guaranteeing the derivative�s

payo¤ in the future.

If the solution is not unique, there may be indeterminacy, even in this

case of complete markets. An example illustrates this point. Consider the

non-terminal node (i; t1) and two immediate successors of (i; t1) ; nodes

(j; t2) and (m; t2). The replicating portfolio, at node (i; t1) ; is the pair

[� (i; t1) ; B (i; t1)]: Assume that this portfolio satis�es

�(i; t1)S (j; t2) +B (i; t1)R = G (j; t2)
� (i; t1)S (m; t2) +B (i; t1)R = G (m; t2)

(33)

We also assume that, at node (i; t1) ;

G (i; t1) = V (i; t1) : (34)

Moreover, let [� (j; t2) ; B (j; t2)] and [� (m; t2) ; B (m; t2)] denote the su-

perreplicating portfolios at nodes (j; t2) and (m; t2) ; respectively. We also

assume that

G (j; t2) > V (j; t2) and G (m; t2) > V (m; t2)

In this case, the value of the portfolio, at node (i; t1), that replicates the value

of the American derivative in nodes (j; t2) and (m; t2) is the same as the pay-

o¤ of the American derivative. Let P (i; t1) denote the price of the American
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derivative at node (i; t1) : In this case P (i; t1) = G (i; t1) = V (i; t1) : Hence,

at node (i; t1) the holder of the American derivative will obtain the same

payo¤ by either exercising or selling the derivative. However, when node

(j; t2) ; or (m; t2) ; is reached the American derivative will be exercised.

Since the replicating portfolio satis�es (33) and (34) ; the solution of

the dual problem is not unique. There are several node probability mea-

sures q solving the maximization problem that characterizes the value of the

derivative: Let q1 and q2 denote two possible solutions. In that case, q1 and

q2 must satisfy

V = max
q12Q

X
(i;t)2Jt
t2Tm

q1 (i; t) �G (i; t) = max
q22Q

X
(i;t)2Jt
t2Tm

q2 (i; t) �G (i; t)

such that for any (i; t) with t 2 TmX
m>t;m2Tm

X
(j;m)2i+t (m)

q1 (j;m)
�
�S (i; t)� �S (j;m)

�
= 0

X
m>t;m2Tm

X
(j;m)2i+t (m)

q2 (j;m)
�
�S (i; t)� �S (j;m)

�
= 0:

If the maximization problem characterizing the value is not uniquely solved

by a node probability measure q; then the stopping time and the adjusted

probability measure are also not uniquely de�ned. For instance, the value

can be written as

V = max
�12T

max
P12P(�1)

Ep1G�1 = max
�22T

max
P22P(�2)

Ep2G�2

with X�1 (i; t1) = 1, X�1 (j; t2) = X�1 (m; t2) = 0; X�2 (i; t1) = 0 and

X�2 (j; t2) = X�2 (m; t2) = 1: Actually, the solution can be written with

randomized stopping times. See the appendix C for an example, where

(j; t2) and (m; t2) are terminal nodes.

As the stopping time is not unique, there are several stopping time fron-

tiers, each one associated with a di¤erent stopping time. For any node inside

all possible stopping time frontiers, the argument of the unique case solution
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applies and the agent does not have any incentive to exercise the American

derivative. However, when the �rst stopping time frontier is reached, namely

node (i; t1) ; the American derivative may be exercised. At node (i; t1) the

value of the replicating portfolio, the payo¤ of the American derivative and

the market value are the same. If the holder of the American derivative

wants to guarantee the highest possible payo¤ at node (i; t1) ; the derivative

must be either exercised or sold at that node. If the holder of the American

derivative wants to guarantee a given payo¤ at some successor of (i; t1) ;

there may be an incentive to exercise or sell the American derivative, and to

use the proceeds to buy a replicating portfolio providing the same payo¤ as

the American derivative at some successors, and a higher payo¤ at all other

successors.

In the case where several stopping time frontiers coexist in this complete

market setting, the exercise at any stopping time frontier before the last

frontier provides a payo¤ equal to the value of the derivative. Also note that

the last stopping time frontier is reduced to the role of a unique stopping

time frontier, if the American derivative is not exercised at the previous

frontiers.

7.2 Incomplete Markets

With incomplete markets the problem is more complex. In order to charac-

terize the optimal exercise policy, we use the stopping time (�u�) that solves

the upper bound of the arbitrage free range of variation. Several points must

be addressed.

First, if the reduced �ltration is considered, the solution may involve

randomized stopping times. Although it is not possible to conclude about

an optimal exercise policy in this situation, we can still assign probabilities

to the exercise of the American derivative at di¤erent nodes.

Second, if we consider the enlarged �ltration, where ordinary stopping
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times are enough to describe the upper bound, the stopping time is not

uniquely de�ned for all paths. In order to work out this case, we now

extend the de�nition of a stopping time frontier for the case of incomplete

markets as follows.

De�nition 7.3 A stopping time frontier is a pair f(i; t) ;yg such that X�� (i; t;y) =
1.

Remark 7.1 Notice that complete markets corresponds to the case where

there is only one vector y; and the de�nition above reduces to the �rst de�-

nition of a stopping time frontier.

Remark 7.2 Note that for two di¤erent sets y1 and y2 with common values

y11 = y21; y
1
2 = y22; : : : ; up to time t; if �

�
w;y1

�
= t then �

�
w;y2

�
= t:

Therefore X��
�
i; t;y1

�
= 1, X��

�
i; t;y2

�
= 1.

We de�ne the interior of the stopping time frontier as follows.

De�nition 7.4 The interior of the stopping time frontier is the set of pre-

decessors of the stopping time frontier.

Even for price paths with a strictly positive q; the optimal stopping ex-

ercise is not uniquely de�ned using pure arbitrage arguments. For a given

realization y of the stochastic process fytgt2T , consider a path of the

price process with a strictly positive q, and let (j;m) be the node such that

q (j;m) > 0: Hence, X�u� (j;m;y) = 1 and, if node (j;m) is reached, the

derivative will be exercised. However, it may be exercised at any predeces-

sor of node (j;m). Let a predecessor of (j;m) be denoted by (k; n): The

reason for the possibility of an American derivative be exercised at (k; n)

is as follows. Using pure arbitrage arguments, it is possible to conclude

that at any predecessor of (j;m) ; the price of the derivative is higher, or
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equal, to its payo¤3. If the price is higher than the payo¤ at (k; n), i.e.,

P (k; n) > G(k; n); any rational agent is better o¤ selling at (k; n), rather

than exercising, the derivative. If the price of the derivative equals its payo¤

at (k; n),4 i.e.,

P (k; n) = G(k; n); (35)

a rational holder who wants to guarantee a given amount at (k; n) is indi¤er-

ent between exercising or selling the derivative. In either case, the proceeds

would su¢ ce to buy a superreplicating portfolio that would assure the deriv-

ative value at (j;m): However, if this agent is concerned with the wealth at

a successor of (k; n) di¤erent from (j;m); he may use the proceeds to buy a

superreplicating portfolio providing the required payo¤ in that successor of

(k; n).

However, if the American derivative is not exercised at any predecessor

of the stopping time frontier, it will be exercised when the stopping time

frontier is reached. The reason is that, at the frontier, the payo¤ is higher

than the value of its replicating portfolio. However, if in a given path there

is no node with a strictly positive q; the optimal stopping time can be such

that X�u� = 1 for some node with zero probability measure. As it is possible

to have more than one node with zero probability measure, the exercise

policy may not be uniquely de�ned.

A third and �nal point, is that the situation occurring in the complete

market case leading to a non-unique solution of the dual problem, may also

happen when markets are incomplete.

7.3 Complete versus Incomplete Markets

In this section we establish the following result.

3The reason is that V u (k; n) � G (k; n) and V l (k; n) � G (k; n) : Hence, the arbitrage-
free price must be higher than the payo¤, i.e., P (k; n) � G (k; n) :

4 In this case we should have V l (k; n) = G (k; n) � V u (k; n)
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Proposition 7.3 For every path such that the stopping time is unique, the

stopping time frontier under complete markets is contained in the union of

the stopping time frontier under incomplete markets and its interior.

Proof. Consider a given y, such that yt = 1: Let V +p (i; t) be the value,

at the node (i; t), of the cheapest self-�nancing portfolio that, from time t+1

on, superreplicates all future payo¤s of the American derivative. If the node

(i; t) ; belongs to the stopping time frontier, then G (i; t) > V +p (i; t) : De�ne

V +1 (i; t) corresponding to V
+
p (i; t) in the case of perfectly liquid markets.

Both V +p (i; t) and V
+
1 (i; t) are the solutions of minimization problems with

the same objective function. Since the constraints characterizing V +1 (i; t)

are contained in the set of constraints characterizing V +p (i; t) ; it follows that

V +1 (i; t) � V +p (i; t) : Therefore, for any given (i; t), G (i; t) < V +1 (i; t) )
G (i; t) < V +p (i; t;y) : Hence, nodes in the interior of the stopping time

frontier under complete markets are also in the interior of the stopping time

frontier under incomplete markets. On the other hand G (i; t) > V +p (i; t))
G (i; t) > V +1 (i; t;y) : This means that nodes at the stopping time frontier

under incomplete markets are not in the interior of the stopping time frontier

under complete markets, completing the proof.

We now turn to the case where there is not a unique stopping time.

In that case, for each path w, pick the node (k; t (w)) such that t (w) =

sups
�
s : X��(w) (i; s) = 1;8 (i; s) 2 w;8�� (w)

	
: Let the set [w2�
 (k; t (w))

denote the envelope of the stopping time frontiers. We now have the follow-

ing.

Proposition 7.4 The envelope of the stopping time frontier under com-

plete markets is contained in the union of the envelope of the stopping time

frontiers under incomplete markets and its interior.

Proof. Analogous to the proof above.
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Corollary 7.5 Under uniqueness of the stopping time, rational exercise of

American options under incomplete markets may occur later than it would

occur under complete markets.

Remark 7.6 This follows directly from the Proposition above. Notice, how-

ever, that American options may be exercised under incomplete markets be-

fore their optimal stopping time, under the condition speci�ed by equation

(35), i.e., under a situation of indi¤erence. If not for that case, American

options under incomplete markets will never be exercised before identical

options under complete markets.

8 Conclusion

We have shown that in the case of deterministic dry markets the bounds

for the values of American derivatives are the supremum of the implied Eu-

ropean derivatives, this supremum being taken over deterministic stopping

times. In the probabilistic case there is an additional source of uncertainty,

the existence or not of the market at given points in time, which can be

interpreted as the realization of an additional stochastic process. If an en-

larged �ltration, resulting from the price process and the market existence

process is considered, only ordinary stopping times are required to describe

the upper and lower bounds. However, if the enlarged �ltration were not

considered, and the stopping times were de�ned using only the �ltration

induced by the price process, then they could be randomized, just as in

Chalasani and Jha (2001).

In a complete market the arbitrage free value of the derivative is unique

and equal to the value of the replicating portfolio. However, in our incom-

plete market framework, that no longer holds true. Ruling out arbitrage

opportunities we simply obtain a range of variation for the value of the

derivative. The arbitrage-free ranges of variation for the deterministic case,
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for the probabilistic case and when transactions are possible at all points

in time are compared. We found out that range in the probabilistic case

includes the range of the deterministic and the one if transactions are pos-

sible at all points in time. Moreover, the lower bound in the probabilistic

case coincides with the one in the deterministic case. However, a relation

cannot be established between the arbitrage-free range in the deterministic

case and the one if transactions are possible at all points in time.

Moreover, when a complete market is considered the optimal exercise

policy corresponds to the stopping time that is the supremum of the implied

European derivatives. Consistently, with the absence of a unique arbitrage-

free price, if American options are considered in this setting, the optimal

exercise policy is also not well de�ned. The reason is that there are paths

where the stopping time is not uniquely de�ned and, in addition, if the �l-

tration induced by the price process is considered, randomized stopping time

must be used. However, we were able to show that, under our incomplete

market setting, an American derivative is exercised before it would be in a

complete market, only under a situation of indi¤erence. In other words, we

have shown that market incompleteness may delay the optimal exercise of

American derivatives.

There are several pricing alternatives in the literature to characterize

the market value, or simply to restrict the arbitrage free range of variation.

The di¤erent approaches5 used with European options to choose a value

in the arbitrage-free range, or to restrict that range, could be helpful with

American derivatives. Notice that an important drawback of the bounds

obtained in the probabilistic case is that these bounds do not depend on the

probability of market existence. However, if a statistical arbitrage concept,

5For instance, equilibrium or utility based approach, as in Rubinstein (1976), Davis
(1997) ; risk/reward criterion as in Bernardo and Ledoit (2000), Cochrane and Saá-Requejo
(2000) and Bondarenko (2002); and considering the market price of risk associated with
non traded state variables as in Heston (1993).
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in the spirit of Bondarenko (2003), rather than pure arbitrage is used, the

bounds could depend on the probability of the existence of the market. This

is a further line of research to be pursued in the next essay with European

derivatives.
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A Proof of theorems 2.1 and 2.2

Proof of theorem 2.1

Proof. Consider some nonsimple node-measure q 2 Q. We will con-
struct two new node probability measures a and c that belong to Q such

that q = 1
2 (a+ c). Hence, as any nonsimple node-measure is not an ex-

treme point we can conclude that an extreme point has to be a simple

node-measure.

If q is a nonsimple node-measure then there is a node (i; t) such that

q (i; t) > 0 and
P

�>t
�2Tm

P
(j;�)2i+t (�)

q (j; �) > 0: Consider such a node (i; t).

Fix some strictly positive " such that " < q (i; t) and for any q (j; k) > 0,

with k 2 Tm, k > t and (j; k) 2 i+t (k) ; we have " < q (j; k) : De�ne a node
measure a that is identical to q everywhere except that

a (i; t) = q (i; t)� "

and, for any (j; k) such that q (j; k) > 0 with k 2 Tm, k > t and (j; k) 2
i+t (k) ;

a (j; k) = q (j; k)

0@1 + "P
(j;�)2i+t (�)

P
�>t
�2Tm

q (j; �)

1A :
Note that the total amount by which q is increased on all the successors of

(i; t) matches the amount by which q is decreased at (i; t)-that is, a is just

a redistribution of q, and so is also a node-measure. The above statement

also hold for the node-function c constructed as a but with �" instead of ":
It is easy to see that q = 1

2 (a+ c) :

In order to conclude that a 2 Q we need to check that the following

conditions hold

a (j; t) � 0; (36)X
t2Tm

X
(j;t)2Jt

a (j; t) = 1 (37)

54



andX
�>t0
�2Tm

X
(j;�)2i+

t0 (�)
a (j; �) �S

�
k; t0

�
=
X

�>t0
�2Tm

X
(j;�)2i+

t0 (�)
a (j; �) �S (j; �) :

(38)

The constraints of equations (37) and (36) are trivially respected. In

what concerns the constraint in equation (38) only the relevant path is being

analyzed. The constraint presented in equation (38) can be written asX
�>t0
�2Tm

X
(j;�)2i+

t0 (�)
[q (j; �) + � (j; �)] �S

�
k; t0

�
(39)

=
X

�>t0
�2Tm

X
(j;�)2i+

t0 (�)
[q (j; �) + � (j; �)] �S (j; �)

where � (j; �) de�ned as

� (j; �) =

8>>>>>>>><>>>>>>>>:

0 ;
(j; �) such that � < t or

(j; �) 2 i+t (�) such that q (j; �) = 0

�" ; (j; �) = (i; t)

"q(j;�)P
(j;�)2i+t (�)

P
�>t
�2Tm

q(j;m) ; otherwise

AsX
�>t0
�2Tm

X
(j;�)2i+

t0 (�)
q (j; �) �S

�
k; t0

�
=
X

�>t0
�2Tm

X
(j;�)2i+

t0 (�)
q (j; �) �S (j; �)

equation (39) can be written asX
�>t0
�2Tm

X
(j;�)2i+

t0 (�)
� (j; �) �S

�
k; t0

�
=
X

�>t0
�2Tm

X
(j;�)2i+

t0 (�)
� (j; �) �S (j; �) :

(40)

In order to check that equation (40) holds two alternative situations will

be considered. The �rst one is t0 � t: In this case, equation (40) can be

written as

" �S
�
k; t0

�
+

"P
j2i+(m)

P
m>t
m2Tm

q (j;m)

X
j2i(� )

X
�>t
�2Tm

q (j; �) �S
�
k; t0

�
= " �S (i; t) +

"P
j2i+(m)

P
m>t
m2Tm

q (j;m)

X
j2i(� )

X
�>t
�2Tm

q (j; �) �S (j; �) :
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As both members are equal to zero the equality holds. The second case to

be considered is t0 > t: In this case, equation (40) can be written as

"P
j2i(� )

P
�>t
�2Tm

q (j; �)

X
j2i(� )

X
�>t0
�2Tm

q (j; �) �S
�
k; t0

�
=

"P
j2i(� )

P
�>t
�2Tm

q (j; �)

X
j2i(� )

X
�>t0
�2Tm

q (j; �) �S (j; �)

As in the previous case, both members are equal to zero and the equality

holds.

Proof of theorem 2.2

Proof. This theorem is corollary 5.5 of Chalasani and Jha (2001) with

nodes corresponding to trading dates t 2 Tm: So, the proof of theorem 2.2

follows the one presented there. In order to proof that for a given measure

strategy-pair (P;X� ) the simple node measure q (i; t) = P (i; t)X� (i; t) is

the unique simple node measure we only need to check that q (i; t) � 0 andX
t2Tm

X
(j;t)2Jt

q (j; t)

=
X
t2Tm

X
(j;t)2Jt

P (i; t)X� (i; t)

=
X

(i;T )2JT

P (i; T )
X

(j;t)2w�(i;T )
X� (j; t) = 1:

On the other hand, for any give node (i; t) such that

q (i; t) +
X

j2i+(� )

X
�>t
�2Tm

q (j; �) > 0

the adjusted probability measure is uniquely de�ned and given by

P (i; t) = q (i; t) +
X

j2i+(� )

X
�>t
�2Tm

q (j; �) :

For all other nodes the adjusted probability measure is de�ned forward-

inductively in the following way. Consider any non-terminal node (i; t1)
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with q (i; t1) > 0: Then, for a given immediate successor of (i; t1) ; denoted

(j; t2) ; set P (j; t2) = P (i; t1). For all other immediate successors of (i; t1)

set the adjusted probability equal to zero. If (j; t2) is a nonterminal node

then same process applies until a terminal node is reached.

In order to de�ne the adapted process X� ; let us denote by w the path

that contains (i; t) and consider a node (j; t2) that is an immediate prede-

cessor of (i; t); i.e., (j; t2) 2 i�t : Then, X� is de�ned as follows

X� (i; t) =

8>>><>>>:
If(i;t):q(i;t)>0g ; if 9(j;m) 2 w : q(j;m) > 0

0 ;
if 8(j;m) 2 w; q(j;m) = 0 and
q (i; t) +

P
j2i+(� )

P
�>t
�2Tm

q (j; �) > 0

If(j;t2):�(j;t2)>0g ; otherwise

where �(j; t2) = q(j; t2) +
P
i2j+(� )

P
�>t2
�2Tm

q (i; �) :

The argument to proof the uniqueness of X� (i; t) and P (i; t) when

q (i; t) +
P
j2i+(� )

P
�>t
�2Tm

q (j; �) is strictly positive is as follows. We �rst

consider the case where q (i; t) > 0 and then the case where q (i; t) = 0:

When q (i; t) is strictly positive, in order to have q (i; t) = p (i; t)X� (i; t) ;

X� (i; t) has to be equal to one. Moreover, the adjusted probability measure

p (i; t) has to be equal to q (i; t). On the other hand, when q (i; t) = 0; in or-

der to have q (i; t) = p (i; t)X� (i; t) ; either X� (i; t) = 0 or p (i; t) = 0: How-

ever, as node (i; t) has a sucessor wtih strictly positive adjusted probability

measure p (i; t) -because
P
j2i+(� )

P
�>t
�2Tm

q (j; �) > 0 and p (j;m) = q (j;m)

when q (j;m) > 0 - the adjusted probability measure at this node, which

is the sum of the adjusted probability on all successors, must be strictly

positive: Hence, X� (i; t) has to be equal to zero. Additionally, as the ad-

justed probability at any given point is the sum of the adjusted probability

on all successors the adjusted probability measure is uniquely de�ned in all

nodes such that

q (i; t) +
X

j2i+(� )

X
�>t
�2Tm

q (j; �) > 0:
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Note that, X� (i; t) is not only uniquely de�ned either when q (i; t) > 0 or

there exists a predecessor of (i; t) with strictly positive q (i; t) ; i.e., q (i; t) +P
j2i+(� )

P
�>t
�2Tm

q (j; �) > 0: It is also uniquely de�ned in the paths which

contain a node with strictly positive q; although q (i; t)+
P
j2i+(� )

P
�>t
�2Tm

q (j; �)

may be zero.

B Proof of theorem 4.3

Proof of theorem 4.3

Proof. The proof that �P (i; t) is a adjusted probability measure is

straightforward. In what concerns the randomized stopping time, X; we

must check that X (i; t) � 0 and condition (17) is satis�ed.
For any given node (j; t+ 1) 2 i+t such � (j; t+ 1) 6= 0 we have

X (i; t) =
� (i; t)
�P (i; t)

�
� (i; t)�

P
fy:yt=1g p (i; t;y)X� (i; t;y)

�P (i; t)

=
� (i; t)
�P (i; t)

�
P
(j;t+1)2i+t

� (j; t+ 1)

�P (i; t)

=
� (i; t)
�P (i; t)

� � (j; t+ 1)�P (j; t+ 1)
:

Consider a given path such that at the terminal node (i; T ) we have � (i; T ) >

0: In that case X
(i;t)2w

X (i; t) = 1:

Consider a given path such that at the node (j; s) we have � (i; t) 6= 0 and
� (m; t+ 1) = 0. In that caseX

(k;r)2w
X (k; r) = 1� � (i; t)�P (i; t)

+X (i; t) +X (m; t+ 1) : (41)

Let (h; t+ 1) be a successor of (i; t) : If � (h; t+ 1) 6= 0 then �P (m; t+1) = 0.

Moreover, as �P (i; t) 6= 0 then X (m; t+ 1) =

P
(i;t+1)2i+t (t+1)

�(i;t+1)

�P (i;t)
: As a
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result, equation (41) can be written asX
(k;r)2w

X (k; r) = 1� � (i; t)�P (i; t)
+

P
fy:yt=1g p (i; t;y)X� (i; t;y)

�P (i; t)

+

P
(i;t+1)2i+t (t+1)

� (i; t+ 1)

�P (i; t)

= 1:

However, if there are not a successor (h; t+ 1) of (i; t) such that � (h; t+ 1) 6=
0 then X

(k;r)2w
X (k; r) = 1� � (i; t)�P (i; t)

+X (i; t) +X (m; t+ 1) (42)

+
X

(k;r)2w
r�t+1

X (k; r) : (43)

�P (m; t+ 1) can take two possible values: 0 and �P (i; t): Let us consider the

two possibilities:

- �P (m; t+ 1) = 0: This situation is the same as the one just described.

- �P (m; t + 1) = �P (i; t): As � (i; t) =
P
fy:yt=1g p (i; t;y)X� (i; t;y) then

� �(i;t)
�P (i;t)

+X (i; t) = 0: Moreover, X(m; t+ 1) = 0: For any (k; r) 2 m+
t+1 (r)

such that �P (k; r) = �P (m; t + 1) then X (k; r) = 0: For a given (k; r) 2
m+
t+1 (r) such that �P (k; r) = 0 and �P (i; r � 1) with (k; r) 2 i+r�1 then

X (k; r) =

P
(k;r)2i+t (r)

�(k;r)

�P (m;t+1)
= 0

As a result, equation (42) is veri�ed and the proof is complete.

C Exercise Policy

Example C.1 Consider a binomial tree with two periods. This framework

is described in the following way where in parenthesis are identi�ed the

nodesThe primal problem can be written as

V = min
f�(0;0);B(0;0);�(1;1);B(1;1);�(2;1);B(2;1)g

�(0; 0)S (0; 0) +B (0; 0)

subject to the following conditions

�(0; 0)S (0; 0) +B (0; 0) � G (0; 0) ;
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(0,0)

(2,1)

(1,1)

(2,1)

(3,2)

(4,2)

(1,2)

(0,0)

(2,1)

(1,1)

(2,1)

(3,2)

(4,2)

(1,2)

�(0; 0)S (1; 1) +B (0; 0)R � G (1; 1) ;

�(0; 0)S (2; 1) +B (0; 0)R � G (2; 1) ;

�(1; 1)S (1; 2) +B (1; 1)R = G (1; 2) ;

�(1; 1)S (2; 2) +B (1; 1)R = G (2; 2) ;

�(2; 1)S (3; 2) +B (2; 1)R = G (3; 2) ;

�(2; 1)S (4; 2) +B (2; 1)R = G (4; 2) ;

and the self-�nancing constraints

�(0; 0)S (1; 1) +B (0; 0)R � �(1; 1)S (1; 1) +B (1; 1)

� (0; 0)S (2; 1) +B (0; 0)R � �(2; 1)S (2; 1) +B (2; 1) :

The dual problem can be written as

max
q (0; 0)

fq (i; 1)gi=1;2
fq (j; 2)gj=1;2;3;4

q(0; 0) �G (0; 0) +
2X
i=1

q (i; 1) �G (i; t) +
4X
i=1

q (i; 2) �G (i; t)

such that
2X
i=1

q (i; 2)S (1; 1) =

2X
i=1

q (i; 2) �S (i; 2)

4X
i=3

q (i; 2)S (2; 1) =
4X
i=3

q (i; 2) �S (i; 2)
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and"
4X
i=1

q (i; 2) +
2X
i=1

q (i; 1)

#
S (0; 0) =

4X
i=1

q (i; 2) �S (i; 2) +
2X
i=1

q (i; 1) �S (i; 1)

Consider the case where the interest rate is zero and the value of the under-

lying asset and the payo¤s of the American derivative can be described asA

S(1,1)=110

G(1,1)=26

S(2,1)=80

G(2,1)=50

S(0,0)=100

G(0,0)=15

S(1,2)=118

G(1,2)=20

S(2,2)=99

G(2,2)=31

S(3,2)=95

G(3,2)=35

S(4,2)=75

G(4,2)=55

S(1,1)=110

G(1,1)=26

S(2,1)=80

G(2,1)=50

S(0,0)=100

G(0,0)=15

S(1,2)=118

G(1,2)=20

S(2,2)=99

G(2,2)=31

S(3,2)=95

G(3,2)=35

S(4,2)=75

G(4,2)=55

possible678 solution of the primal problem is

�(:; :) B (:; :)
(0; 0) �0:8 114
(1; 1) �0; 579 88; 32
(2; 1) �1 130

6The portfolio �(0; 0) and B(0; 0) is uniquely de�ned because it is the only one that
replicates at time t = 1. At node node (1; 1) the value of the portfolio [�(0; 0),B(0; 0)] is
equal to G(1; 1) because the value of the portfolio that replicates G(1; 2) and G(2; 2)
is smaller than G(1; 1): On the other hand, at node (2; 1) the value of the portfolio
[�(0; 0),B(0; 0)] is equal to G(2; 1) and to value of the replicating portfolio at t = 2,
because they coincide. Any other portfolio that superreplicates at time t = 1 would be
more expensive.

7The portolio �(1; 1) and B(1; 1) is not uniquely de�ned because the value at node
(1; 1) of the porfolio that replicates the payo¤s of the American derivative at nodes (1; 2)
and (2; 2) is smaller that G(1; 1).

8 In node (2; 1) the value of the portfolio that replicates the payo¤ of the American
derivative at nodes (3; 2) and (4; 2) is equal to the payo¤ of the American derivative, i.e.,
�(2; 1)S (2; 1) +B (2; 1) = G (2; 1) Hence, any other portfolio that replicates the payo¤s
will have a cost higher than G (2; 1) resulting in a higher value of the function. As a result,
the portfolio in node (2; 1) is unique.
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Two possible solutions of the dual problem are given by

q1 (:; :) q2 (:; :)
(0; 0) 0 0
(1; 1) 0; 6667 0; 6667
(2; 1) 0; 3333 0
(1; 2) 0 0
(2; 2) 0 0
(3; 2) 0 0; 0833
(4; 2) 0 0; 25

q3 (:; :)
0

0; 6667
0; 2933
0
0
0; 01
0; 03

The correspondent stopping time and probability measures9 are given in the

next table. The probability measure P 2 P , that is uniquely de�ned, is

presented in the last row.

�1(:; :) P 1(:; :) �2(:; :) P 2(:; :)
(0; 0) 0 1 0 1
(1; 1) 1 2

3 1 2
3

(2; 1) 1 1
3 0 1

3
(1; 2) 0 0 0 2

3
(2; 2) 0 2

3 0 0
(3; 2) 0 0 1 1

12
(4; 2) 0 1

3 1 1
4

�3rand(:; :) P 3(:; :)
0 1
1 2

3
0:88 1

3
0 0
0 2

3
0:12 1

12
0:12 1

4

P (:; :)
1
2
3
1
3
22
57
16
57
1
12
1
4

If assumption 1 holds the exercise policy can be given by the stopping time

�1 or �2: However, if assumption 2 holds the exercise policy is given by

stopping time �2:

9The probability measures are not uniquely de�ned. The probability in bold menas
that it is uniquely de�ned in these nodes.
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