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ABSTRACT

We examine the impact of human errors by front-line supply chain employees

on delivery delays. We build on normal accident theory (NAT), a multilevel

theory describing the relationship between a firm's latent conditions (systemic

managerial, technology, and social factors) and human errors. Latent condi-

tions can have the unintended consequence of intensifying the impact of a

human error, thus, we hypothesize a moderating effect of latent conditions on

the relationship between errors and delivery delays. Hypotheses are tested

using archival shipment data provided by a Fortune 500 company and archival

carrier violations data. A multilevel design, with 299,399 shipments (level 1)

nested within 97 carriers (level 2), was tested using mixed effects regression

modeling. The results indicated that both dispatcher and driver errors were

related to the probability of a late delivery, and that dispatcher errors were

associated with longer delays. The moderating effects of several carrier latent

conditions were significant and positive, indicating that both types of errors

were more strongly associated with the likelihood of late delivery and that dis-

patcher errors were associated with longer delays when moderated by carrier

latent conditions. The results are discussed from the perspective of NAT and

technology management, developing prescriptions, and suggesting opportuni-

ties for future research.
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1 | INTRODUCTION

Technology has played an important role in developing
processes resilient to human error (Adelman, 2019).
Important technology-related operational improvements
have been achieved across such diverse contexts as retail
(Asare et al., 2016), construction (Nnaji et al., 2019),
healthcare (Douglas & Larrabee, 2003; Harrington
et al., 2011; Knoedler, 2003), retail pharmacies (Elliott
et al., 2014), outsourcing to developing country suppliers

(Thomas & Ray, 2019), nuclear power generation
(Stock & McFadden, 2017), municipal government
(Sanford & Bhattacherjee, 2007), logistics (Cantor
et al., 2016; Hickman et al., 2015; Scott et al., 2021), avia-
tion (DeFlorio, 2016; Peysakhovich et al., 2018; Rusu
et al., 2012), pharmaceutical manufacturing (Markarian,
2019), and automotive manufacturing (Ponnaluri, 2019;
Subit et al., 2017). Error reduction technologies include
computerized physician order entry (Cowan, 2003; Har-
rington et al., 2011), vendor-managed inventory (Asare
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et al., 2016), automated driving technologies
(Ponnaluri, 2019; Subit et al., 2017), bar-coded medica-
tion administration (Douglas & Larrabee, 2003; Harring-
ton et al., 2011), collaborative decision support systems
(Rusu et al., 2012), smart construction helmets (Nnaji
et al., 2019), point-of-sale technologies (Asare
et al., 2016), eye tracking technology (Peysakhovich
et al., 2018), and many other innovative technologies,
with a goal of automating human variability out of pro-
cesses (Granot, 1998).

Why, then, do so many reports of human errors con-
tinue to persist, despite investments in technology
(Yusuf & Sahroni, 2018)? Explanations include organiza-
tional culture (Averett, 2001; Sanford &
Bhattacherjee, 2007), unintended consequences that actu-
ally cause an increase in errors, such as reduced nurse–
physician interaction when computerized physician order
entry systems are used (Cowan, 2003), overreliance on
technology (Ngwenyama & Nielsen, 2014; Peysakhovich
et al., 2018), late employee involvement (Averett, 2001),
weak influence skills (Ngwenyama & Nielsen, 2014;
O'Conor & Smallman, 1995), inadequate communication
(Averett, 2001; Cowan, 2003), lack of perceived benefit
(Ngwenyama & Nielsen, 2014), employee resistance
(Averett, 2001; Markarian, 2019), technology alert fatigue
(Cowan, 2003; Yusuf & Sahroni, 2018), and failure to
consider the relationship between a technology, the firm
in which it is implemented, and its environment
(Gangwa et al., 2014). Scott et al. (2021) describe the case
of a monitoring technology that achieved its primary goal
of preventing truck drivers from exceeding their maxi-
mum daily hours of service, but led to the unintended
consequence of causing drivers to speed or drive unsafely.
Clearly, social and managerial factors are important to a
technology's success, in addition to its unique features
(Averett, 2001; Ngwenyama & Nielsen, 2014). In other
words, as operations improve through technology, what
remains is human error (Sterns & Keller, 1991). For
example, in aviation, “technical failure today is the cause
of only about 10% of accidents, leaving a significant per-
centage the implications of human error” (Peysakhovich
et al., 2018, p. 1).

This suggests the importance of a socio-technical sys-
tems approach, based on two principles (Bednar &
Welch, 2020; Leitch & Warren, 2010; Winter et al., 2014):
(a) the interaction between human and technical factors
creates the conditions for successful outcomes, and
(b) optimization of technology or human factors, alone, is
suboptimal and will lead to less successful outcomes. The
human element introduces uncertainty, the potential for
error, and unintended consequences (Harrington
et al., 2011; Scott et al., 2021; Taylor & Robinson, 2015).
For example, decision support systems may introduce

new opportunities for human errors (Beiger &
Kichak, 2004), including over-trusting a technology (Tsai
et al., 2003), overriding information not perceived as ben-
eficial (Van der Sijs et al., 2009), and reduced vigilance
(Harrington et al., 2011).

We examine variability caused by human error and
its impact on performance in a context where technology
provides a potential safeguard against adverse conse-
quences. We draw upon normal accident theory (NAT)
(Perrow, 1999; Reason, 2000), which describes human
errors and their potential for adverse consequences,
which NAT defines as disruptions to system outputs.
NAT views organizations as complex systems, delineating
the interrelationships between human and system char-
acteristics that lead to adverse consequences. We focus
on front-line operators in a supply chain: truck drivers
conveying shipments and dispatchers interfacing
between drivers and carriers. Like all people, drivers and
dispatchers sometimes unintentionally commit errors.
Because supply chain members are tightly coupled, with
little slack, even a minor error can have adverse
consequences.

To prevent driver errors, carriers invest in sophisti-
cated technologies such as speed regulators, collision
mitigation systems, biometric fatigue sensors, video
monitoring, rollover stability systems, geo-fencing, and
lane departure warning systems. Since late 2017, the
Federal Motor Carrier Safety Administration (FMCSA)
has required onboard electronic logging devices (ELDs)
that report drivers' speed, idle time, hard braking, vehi-
cle location, engine operating hours, and vehicle miles
at frequent intervals. Many carriers have embraced this
technology, voluntarily exceeding the mandate to
ensure the safety of their drivers, vehicles, cargo, and
the public. To prevent dispatcher errors, carriers and
shippers invest in transportation management systems
(TMS) (see Appendix) to support shipment planning,
routing, carrier mix, matching cargo with vehicles, and
tracking shipments. Although TMS technology has pro-
vided powerful managerial tools for decades (see Moore
et al., 1991 for an early application), it is not infallible
(Lechler et al., 2019; Mehmood et al., 2017). Supply
chains are inherently complex, involving many stake-
holders, from customers, shippers, and carriers to gov-
ernment regulators and the public (Bode &
Wagner, 2015; Serdarasan, 2013). While information
technologies can improve efficiency and reduce uncer-
tainty (Karimi et al., 2004; Melville & Ramirez, 2008;
Wu et al., 2013), the data driving them must be accurate
and timely (Galbraith, 2014). Further, employees must
be able to understand and act on the outputs of informa-
tion technology (IT). For example, according to a ship-
ping company manager we met with,
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“Having a $10,000 computer that's hooked
up to a $60 million GPS system doesn't elimi-
nate all problems. There is still a person
behind the keyboard who is acting on the
information or relaying that information. I
wish I could control or predict that person,
but human nature just kicks in.”

The human nature he refers to is unexpected out-
comes resulting from human errors, which are inevitable
in a human–technology interface (Chakravorty, 2011).
Thus, we explore human errors by drivers and dis-
patchers that paradoxically occur despite prevention
technology investments.

Specifically, we investigate whether human errors are
more likely to have shipment delay implications in the
context of various carrier latent conditions (systemic fac-
tors). Latent conditions include managerial, technology,
and social factors, such as hiring and training practices,
policies, priorities, equipment, IT, norms, values, and
safety culture. Latent conditions that intensify the nega-
tive effects of a human error are known as resident path-
ogens, while latent conditions that reduce the negative
consequences of a human error are known as defensive
layers. For example, for a carrier that routinely employs
inexperienced drivers or drivers with a poor driving
record (resident pathogen), a minor dispatcher error is
more likely to lead to adverse consequences. We develop
hypotheses about the cross-level moderating effect of car-
rier latent conditions on the likelihood that a dispatcher
or driver error will lead to a late delivery or increase
delivery delay.

We contribute to the technology management litera-
ture by motivating worrisome questions about the
human–technology interface, such as (a) With so much
TMS and tractor-trailer IT in place, what are the conse-
quences of human errors? (b) How can the consequences
of human errors be lessened through addressing carrier
latent conditions, including managerial, technology, and
social factors? This exploratory research underlines the
importance of latent conditions in reducing or intensify-
ing the adverse consequences of human errors by devel-
oping defensive layers through management policies and
priorities, investments in technology, and carrier norms
and values.

We begin by drawing on NAT's theoretical foundation
to describe human errors and latent conditions in supply
chain operations and propose hypotheses about the direct
effect of errors and the cross-level moderating effects of
latent conditions. We test a two-level model using mixed
effects regression analyses, with archival data on 299,399
shipments (level 1) by a Fortune 500 company, nested in
the 97 carriers (level 2) that conveyed them. The results

provide support for the hypothesized main effects and
moderating effects of carrier latent conditions. We con-
clude by suggesting practical actions carriers can take to
reduce resident pathogens and strengthen defensive
layers to lessen the impact of human errors, as well as
posing opportunities for future research.

2 | THEORETICAL FOUNDATION

NAT describes how the tight coupling and complex inter-
actions of high-risk organizations (Adelman, 2019) cause
adverse consequences to be perceived as “normal”
(Speier et al., 2011; Stock & McFadden, 2017;
Weick, 2004). Supply chain operations share many
assumptions about high-risk organizations (Bigley &
Roberts, 2001), including important decisions made by
low-level personnel under minimal supervision (truck
drivers on the road) (Caplice, 2007; Short et al., 2007),
tight coupling, importance of subsystem interfaces, coor-
dination, and movement (Grabowski & Roberts, 1997),
time-dependent processes, minimal slack, and complex
interactions (Perrow, 1999). Although supply chain oper-
ations do not have the potential for the catastrophic
adverse consequences of high-risk organizations such as
a nuclear power plant (Stock & McFadden, 2017) or space
shuttle (Vaughan, 1996), a relatively minor assignment
error by a dispatcher or loading error by a driver can
cause delays with significant implications. For example,
consider shipper Company A, which was promised deliv-
ery of a shipment by a carrier between 9:00 am and noon
on Monday. Company A arranged for the carrier to break
down the load and last mile deliver it to 40 of Company
A's customers on Monday afternoon and Tuesday morn-
ing, within 3-h windows. If the carrier's delivery is del-
ayed, Company A will need to make 40 calls to its
customers to arrange 40 new delivery windows. If such
delays become habitual, Company A will come to be reg-
arded as unreliable, causing its customers to take their
business elsewhere.

NAT has three key constructs: adverse consequences,
active failures, and latent conditions. We describe each
below, provide supply chain examples, and summarize
NAT's key propositions.

2.1 | Adverse consequences

NAT's first key construct is adverse consequences, which
it operationalizes as accidents. NAT defines an accident
as “damage to a defined system that disrupts the ongoing
or future outputs of that system” (Perrow, 1999, p. 64). In
a supply chain, we focus on late deliveries (rather than
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crashes) as adverse consequences for several reasons.
First, this is consistent with supply chain goals; a reliable
supply chain delivers its goods on time. Second, supply
chain delivery delays are important system outputs that
can cause strained relationships, reduced future business,
and levied financial penalties (Bigley & Roberts, 2001;
Hubbard, 2003; Miller, Golicic, & Fugate, 2017a). Third,
because the number of crashes per opportunity is rela-
tively low, more can be learned (Roberts &
Rousseau, 1989; Weick, 1987) about supply chain perfor-
mance through the study of late deliveries. To avoid con-
fusion with crashes, we use the generic term “adverse
consequences,” rather than “accidents”; thus, an adverse
consequence in supply chain operations is a delayed deliv-
ery. NAT proposes adverse consequences result from a
combination of individual (active failures) and systemic
(latent conditions) factors (Reason, 1990).

2.2 | Active failures

NAT's second key construct is active failures. An active
failure is an unintentional human error that has an imme-
diate, often negative, effect (Howe et al., 2020; Kanki &
Hobbs, 2018). People frequently make errors when
engaged in the automatic, unconscious cognitive
processing known as skill-based processing (Stewart &
Grout, 2001). If a situation warrants it, people shift from
skill-based processing to rule-based processing (applying
cognitive rules developed through past experiences) or to
knowledge-based processing, for which their prior knowl-
edge and experience is insufficient (Stewart &
Chase, 1999). Different types of errors are associated with
each type of cognitive processing (see Table 1; Figure 1).

2.2.1 | Skill-based errors

Skill-based cognitive processing uses automatic function-
ing (Spender, 1996) of hierarchically organized cognitive
routines and subroutines (Norman, 1981) as people
engage in common activities and make everyday deci-
sions (Stewart & Grout, 2001). Actions governing familiar
activities are stored as mental subroutines that operate
without conscious intervention, once activated
(Stewart & Chase, 1999). For example, a person wanting
to go to the kitchen would activate the “walking” routine,
which then automatically triggers subroutines for getting
up, lifting and placing feet, balance, locomotion, and so
on. Skill-based processing errors result from overtaxing
cognitive resources (Stewart & Grout, 2001), causing sub-
routines to become “unruly” (Reason & Mycielska, 1982)
through loss of subroutine activation (Hofmann

et al., 1995), incorrect subroutine triggering by a similar
cue (Sutcliffe & Rugg, 1998), or failure of the correct cue
to trigger a subroutine (Norman, 1981). As anyone who
has ever forgotten why he or she walked into the kitchen
understands, skill-based errors are inevitable and auto-
matic. These “stupid mistakes” (Chakravorty, 2011) are

TABLE 1 Examples of active failures

Type of
cognitive
processing Driver errors Dispatcher errors

Skill-based • Place losing error:
Driver
accidentally
misses a turn

• Reversal error:
Dispatcher
reverses digits
when entering
the delivery
address into
the TMS

• Capture error:
Driver misreads
the map, while
thinking about a
personal situation

• Description error:
Dispatcher enters
billing address
into the delivery
address field

Rule-based • Misapplication of
a good rule:
Faced with an
obstacle, driver
hits the brakes
while driving on
an icy road

• Context error:
Dispatcher
assigns a standard
530 trailer to a
shipment to a
dense urban
destination

• Application of a
bad rule: To avoid
a late departure,
driver departs
without ensuring
cargo is properly
secured

• Rigidity error:
dispatcher
consistently fails
to look at the
“notes” section of
a P.O., failing to
provide driver
with delivery
specifics

Knowledge-
based

• Symbol
manipulation
error: Driver does
not know how to
interpret map
correctly

• Knowledge error:
Dispatcher does
not know which
types of loads
require safety roil
bars in the power
units

• Logical deduction
error: Driver fails
to investigate
engine rattle,
assuming it is
acceptable
because the
engine is still
running

• Inadequate
retrieval error:
Dispatcher does
not know how to
respond to driver
information
system in the
track/trace
system
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the most common type of human error, are unavoidable,
and have the most trivial impact (Reason, 2000).

2.2.2 | Rule-based errors

People apply rule-based cognitive processing to less
familiar situations as they search for a familiar pattern so
they can apply a stored rule (Stewart & Chase, 1999) for
determining which subroutines to activate
(Rasmussen, 1982; Rasmussen & Jenssen, 1974). This pat-
tern search is virtually automatic (Stewart &
Chase, 1999). For example, a professional chess player
can quickly determine an effective move after a rapid
mental search through numerous patterns of chess plays
and their associated benefits and dangers (Simon, 1981).
Rule-based errors include application of the wrong rule,
incorrect application of the right rule, failing to recognize
a situation where a rule should have been applied, rigid-
ity in applying a suboptimal rule, and correct triggering
of a malformed rule (Sutcliffe & Rugg, 1998). They are
less common than skill-based errors but can have more
substantial consequences. Because rule-based errors
depend on the extent to which a person has developed
effective rules and understands when these rules should
be applied, rule-based errors can be prevented by a better
search process, nurtured through experience and training
(Stewart & Chase, 1999).

2.2.3 | Knowledge-based errors

People apply knowledge-based cognitive processing to
novel problems with which they have limited experience
(Rasmussen, 1982). Without automatic subroutines or
stored rules to draw upon, they must apply internal
processing, logical deduction, and symbol manipulation
to form a mental picture of a new problem and search for
a solution (Stewart & Chase, 1999). Knowledge-based

errors are less common than skill-based or rule-based
errors, however, their impact is often more serious.
Because of the internal processing required, knowledge-
based errors are related to individual abilities and
context-specific conditions (Rasmussen, 1983), thus they
are more preventable through managerial decisions,
training, investments in technology, clear procedures, a
supportive culture, and other factors.

Thus, an active failure is an unintentional error that
occurs when a person's planned action sequence fails to
achieve its intended goal (Reason, 1990). Active failures
encompass all three types of cognitive processing: skill-
based, rule-based, and knowledge-based. NAT predicts
that active failures are associated with adverse conse-
quences. It is important to note that, because of their
unconscious and “normal” character, errors are not usu-
ally reported or measured (Adelman, 2019), making
error-related research challenging. However, errors can
be deduced from their immediate effects, such as actions
taken to compensate for an error, which are more likely
to be recorded. Table 2 lists the arrival codes for deliver-
ies by the shipper we studied, which we call Large Inte-
grated Manufacturer (LIM). The codes describe the
immediate effects of unobservable errors; for example,
arrival code 5 could be the result of a dispatcher's reversal
error, while arrival code 17 could be due to a driver's
place-losing error.

2.3 | Latent conditions

NAT's final key construct is latent conditions. Latent con-
ditions are systemic managerial, technology, and social
conditions that define a firm (Kanki & Hobbs, 2018).
Managerial latent conditions are embedded in policies
and priorities that signal employees about appropriate
and inappropriate actions. Technology latent conditions
encompass investments in technology to encourage or
support desirable actions and prevent undesirable

FIGURE 1 Taxonomy of errors (Reprinted with permission Reason, 1990)
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actions. Social latent conditions reflect a firm's “…
assumptions and values, usually implicit, about how to
interpret organizational reality … and how to succeed
(Thornton, 2004, p. 76).” They develop through conver-
gent thinking within an industry or firm as processes
take on a “rule-like status” (Meyer & Rowan, 1977) over
time, causing the development of “scripts” (Brammer
et al., 2012), activated during rule-based processing, that
enable or constrain actions.

Latent conditions can combine with an active failure
to trigger adverse consequences (Kanki & Hobbs, 2018);
unintentional errors are exacerbated by latent conditions
such as insufficient planning, weak preventive technol-
ogy, inappropriate priorities, or poor safety culture
(Yusuf & Sahroni, 2018). Leape (1994) likens latent con-
ditions to a patient's immune system. A weak immune
system does not cause illness, but if a patient is exposed
(active failure) to a virus, a weak immune system makes
it more likely that illness (adverse consequence) will
result. On the other hand, a strong immune system
makes it less likely that exposure to a virus will result in
illness. Thus, NAT predicts that the effect of an active
failure on adverse consequences is moderated by latent
conditions. Latent conditions are comprised of resident
pathogens and defensive layers (Reason, 2000).

2.3.1 | Resident pathogens

Resident pathogens are managerial, technology, and social
factors that increase the likelihood an active failure will
have adverse consequences, according to NAT. The more
complex and tightly coupled a firm is, the more resident
pathogens its latent conditions contain (Reason, 2000).
Managerial resident pathogens can inadvertently signal
dispatchers and drivers that a carrier places a low priority

on driving safety (Detert et al., 2000; Short et al., 2007).
For example, a policy that pays drivers a set rate per
loaded mile1 may signal that driving as far as possible
each day is more important than safety (Cantor
et al., 2013; Scott & Nyaga, 2019). Other managerial resi-
dent pathogens include a carrier's tendency to defer vehi-
cle maintenance or tolerate speeding (e.g., a policy of
reimbursing drivers for speeding tickets).

Technology resident pathogens include specific tech-
nologies, integration with other technologies, and the
ability to understand and act upon the information gen-
erated by technology (Yusuf & Sahroni, 2018). Minimal
TMS investments provide dispatchers limited support in
their routing, loading, and tracking decisions, leaving
more decisions to their discretion, and setting the stage
for rule-based and knowledge-based errors. Poor integra-
tion (Rusu et al., 2012) between a carrier's TMS and a
shipper's TMS can distort data flows between the two
companies. However, even with a sophisticated, well-
integrated TMS, a dispatcher may lack the ability to effec-
tively capture, analyze, and act upon the high volumes of
information generated.

Our manual system was slow and we made
10 mistakes every day, and now the auto-
mated system is fast—and we make 1000
mistakes every day (Chakravorty, 2011,
p. 96).

Social resident pathogens cause perceptions of “how
we do things around here” (Hofmann & Stetzer, 1996).
Stories about how drivers circumvented rules, policies,
and monitoring technologies in the past evolve into
“rationalized myths” (Meyer & Rowan, 1977) over time.
For example, two rationalized myths discourage error
reporting: the perfection myth (if employees try hard

TABLE 2 LIM's arrival codes

Code Explanation Code Explanation

1 Normal delivery, no issues 9 Incorrect address provided on documents

2 Carrier has no drivers available 10 Other carrier-related reason

3 Dispatch mistake 11 Driver related departure delay

4 Insufficient delivery time allowed 12 Driver related arrival delay

5 Dispatcher keying mistake 13 Driver took too long at previous stop

6 Late departure from origin: mechanical
breakdown

14 Driver missed de lively window

7 Late arrival at destination: mechanical
breakdown

15 Driver missed pickup window

8 Consignee-related reason 16 Driver rest delay

17 Driver transportation delay
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enough, they will not commit any mistakes) and the pun-
ishment myth (if employees are punished for errors, they
will commit fewer of them) (Meyer & Rowan, 1977).

2.3.2 | Defensive layers

Defensive layers are managerial, technology, and social fac-
tors that prevent an active failure from having a negative
impact, according to NAT. Managerial defensive layers
include clear procedures, employee training, control sys-
tems, supervisory systems, quality control standards, and
priorities (Aird, 2019; Howe et al., 2020; Kanki &
Hobbs, 2018). Examples include ecological interface design
(Rasmussen, 1983; Rasmussen et al., 1994), training simu-
lators (Stewart & Grout, 2001), cognitive engineering
(Rasmussen, 1987; Rasmussen, 1988), compensation poli-
cies, priorities, and vehicle maintenance policies.

Technology defensive layers include investments in error
monitoring and prevention technologies. TMS supports

dispatchers in configuring shipments, putting them out for
bid, and managing service contract execution. Driver tech-
nology defensive layers include sensors, go/no-go gauges,
and switches (Shingo, 1986). For example, if a driver com-
mits a rule-based error by shifting into the wrong gear (cor-
rect triggering of the wrong rule) or hitting the brakes on an
icy surface (misapplication of a good rule), the potential for
adverse consequences will be less if the vehicle is equipped
with speed regulating technology. The FMCSA's ELD man-
dates (Scott et al., 2021) provide a technology defensive layer
by monitoring hours-of-service (HOS) compliance by
drivers. However, because it does not apply to vehicles man-
ufactured before 2000, carriers can purchase grandfathered
trucks or hire owner-operators who own grandfathered tru-
cks, to avoid compliance. Thus, while ELDs are a technology
defensive layer, a policy of allowing grandfathered trucks is
a managerial resident pathogen.

Social defensive layers are the positive social institu-
tions (Meyer & Rowan, 1977) that combine to form a
firm's safety culture, which is “sets of norms, roles,

FIGURE 2 Swiss cheese model of error vectors and defensive layers
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beliefs, attitudes, and … practices within an organization
… concerned with minimizing the exposure of individuals
to conditions considered to be dangerous (Taft &
Reynolds, 1994, p. 3).” If a firm's safety culture is strong,
failing to follow a safety protocol would be unthinkable.

NAT describes defensive layers as being like parallel
slices of Swiss cheese (see Figure 2); each defensive layer
(slice) has some holes (resident pathogens) through which
the impact of an error can potentially pass (Reason, 1990).
Since defensive layer holes do not normally line up, an
error's impact passing through one defensive layer will be
stopped by the subsequent layer. However, defensive
layers are constantly shifting, with holes that simulta-
neously expand and contract, so sometimes the holes in all
layers align. For example, the momentary alignment of
defensive layer holes caused a skill-based error like a leak
of less than one cup of water (Three Mile Island) or a
knowledge-based error by an operator unfamiliar with
emergency protocols (Chernobyl) to have catastrophic
adverse consequences (Reason, 2000).

NAT predicts the strength of a carrier's defensive
layers determines the extent to which the negative impact
of errors will lead to adverse consequences. Stronger
defensive layers are characterized by (a) more layers,
(b) fewer holes in each layer, (c) smaller holes, and
(d) less shifting of layers.

3 | HYPOTHESES

Figure 3 illustrates our research model. Building on NAT,
we propose that dispatcher and driver errors are associ-
ated with adverse consequences and that carrier latent

conditions moderate this effect. Because errors and their
consequences occur at the shipment level, while latent
conditions exist at the carrier level, testing this model
necessitates a multi-level design.

3.1 | Impact of active failures (Level 1)

Level 1 is comprised of errors by dispatchers and drivers.
We hypothesize that dispatcher errors increase the likeli-
hood of adverse consequences. Examples of dispatcher
errors include skill-based errors like forgetting to notify a
driver about a shipment, entering incorrect address infor-
mation, or failing to enter “Notes” from the P.O. (“use
the second door after 5:00”), rule-based errors like assig-
ning chilled products to a standard trailer (Robinson
et al., 2013), assigning hazardous materials to a non-
Homeland Security screened trailer, or assigning a stan-
dard power unit to a trailer requiring a power unit with a
reinforced metal roll bar (Hickman et al., 2015), and
knowledge-based errors like misreading the TMS's out-
puts. Each of these errors increases the likelihood of a
delayed delivery as the driver engages in time-consuming
tasks to compensate, such as changing vehicles, hunting
for the right door, or driving to the correct loca-
tion. Thus,

Hypothesis 1a (H1a). Dispatcher active fail-
ures are positively associated with the likeli-
hood of delayed delivery.

We also hypothesize that driver errors increase the
likelihood of adverse consequences. The monotony of

FIGURE 3 Research model
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loading, driving 500 or more miles, unloading, then
repeating the process the next day (Johnson et al., 2009)
can lead to inattentiveness, fatigue, indifference, and
slower reaction times that set the stage for skill-based
errors like neglecting to oversee the loading of some
cargo (omission error), missing a turn (place losing
error), or dozing (intrusion error). Weeks and months of
travel across thousands of miles can cause a driver to
develop an inflated view of his or her ability, causing
rule-based errors related to risk taking and poor judg-
ment (Douglas & Swartz, 2016), such as speeding or load-
ing a trailer beyond its weight limit. Driver errors result
in an increased likelihood of delayed delivery as the
driver compensates, such as reloading the trailer.

Hypothesis 1b (H1b). Driver active failures
are positively associated with the likelihood of
delayed delivery.

3.2 | Moderating effect of latent
conditions on delay likelihood (Level 2)

At the carrier level (Level 2) latent conditions are inher-
ently challenging to measure. Managerial, technology,
and social latent conditions are based on deeply held,
tacit values that emerge gradually, based on the carrier's
unique history, strategy, external environment, manage-
ment style, and employees (Cameron & Quinn, 2011).
Schein (2004) recommends using artifacts (visible struc-
tures and processes) to impute values. Consider the anal-
ogy of a patient's immune system. Although it is difficult
to measure directly, strength of a patient's immune sys-
tem can be imputed from the artifact of his or her record
of illnesses. Because violations are unsafe acts in which
employees intentionally bypass policies or procedures
(Howe et al., 2020), they reflect a firm's values, resident
pathogens, and defensive layers. Thus, we can impute a
carrier's latent conditions from its record of violations.

3.2.1 | Unsafe driving violations

A carrier's record of unsafe driving violations is an arti-
fact of latent conditions reflecting its tolerance for speed-
ing, illegal turns, quick lane changes, or driving too fast
for conditions. For example, managerial resident patho-
gens like a policy of no pay for out-of-route miles could
incentivize making an illegal U-turn (Swartz et al., 2017)
to compensate for an error, and mileage-based pay could
encourage driving in severe weather conditions (Cantor
et al., 2009). Technology resident pathogens contributing
to tolerance for unsafe practices include a TMS with few

built-in checks; resulting dispatcher data entry errors
could cause a driver to speed, make an illegal turn, or
make a quick lane change to compensate. The inability of
a carrier to compile and analyze data from the onboard
ELD or track/trace system prevents dispatchers from
realizing when unsafe driving occurs. Managerial resi-
dent pathogens that signal the acceptability of assigning
shipments that cannot possibly be delivered on time trig-
ger social resident pathogens through scripts that ratio-
nalize the need to speed or tamper with onboard
monitoring technology, based on stories glorifying previ-
ous drivers who did so.

… there is empirical evidence that a carrier's
… rewards and penalties for drivers create a
perceived pressure to ‘bend rules,’ resulting
in scheduling drivers that are still fatigued
from previous work and having them rush
shipments (Cantor et al., 2013, p. 39).

Managerial defensive layers include policies about the
priority of safety versus on-time delivery, hiring only
drivers with a safe driving record, punishing or dis-
missing dispatchers and drivers whose practices have
contributed to unsafe driving violations, and training dis-
patchers to avoid inadvertently encouraging drivers to
engage in unsafe driving practices. Technology defensive
layers include lane departure warning systems (McNall &
Stanton, 2011), video monitoring (Hickman &
Hanowski, 2011), geo-fencing notifying dispatchers of
off-route shipments, and speed regulators (Cantor
et al., 2009).

When a dispatcher or driver makes an error, the like-
lihood of adverse consequences is greater if latent condi-
tions encourage driver fatigue, stress, or overconfidence
(Brown, 1996; Cantor et al., 2009; Ray et al., 1993). On
the other hand, if latent conditions encourage drivers to
be alert, well-rested, and level-headed, an error is less
likely to have adverse consequences. Thus,

Hypothesis 2 (H2). A carrier's record of
unsafe driving violations moderates the likeli-
hood that an active failure by a (a) dispatcher
or (b) driver results in delayed delivery, such
that the likelihood of delayed delivery will be
enhanced for shipments by carriers with more
unsafe driving violations.

3.2.2 | Hours of service violations

A carrier's record of hours of service (HOS) violations is
an artifact of its tolerance for exceeding HOS limits.2
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Managerial resident pathogens include dispatchers rou-
tinely assigning long, irregular driving hours
(Saltzman & Belzer, 2002), a policy of using gra-
ndfathered trucks without onboard ELD systems, penal-
ties for failing to deliver the last shipment at the end of
the day (Swartz et al., 2017), mileage-based pay (Miller &
Saldanha, 2016), and rewards for on-time delivery
(Hofmann & Stetzer, 1998). Technology resident patho-
gens include TMS that allows assignments that could not
possibly be delivered on time, carriers failing to act upon
ELD reports of drivers exceeding HOS limits (Miller &
Saldanha, 2016), manual logbooks, and non-tamperproof
ELD systems. Because people interpret and attach mean-
ing to their work environment (Hofmann &
Stetzer, 1998), drivers' perceptions of behavior-outcome
contingencies embedded in carrier latent conditions cre-
ate social resident pathogens such as the rationalized
myth that “taking risks is simply part of [the] job”
(Hofmann & Stetzer, 1996, p. 310).

Managerial defensive layers include a policy of only
hiring drivers with low HOS violations, well-
communicated policies about mandatory rest periods,
HOS compliance incentives, and fines or termination
for HOS violations. Defensive technology layers against
HOS violations include control poka-yokes
(Shingo, 1986) that shut down a vehicle when its HOS
limit is reached, biometric fatigue sensors (Cantor
et al., 2008), regular monitoring of ELD data, and
tamper-proof ELD devices. Over time, these work
together to develop the social defensive layer norm that
exceeding HOS limits is unthinkable.

If an error occurs in a system that tolerates exceeding
HOS limits, the likelihood of a delivery delay is greater as
the driver has no disincentive to avoid exceeding HOS
limits and fatigue increases the likelihood of further skill-
based errors, selection of the wrong rules, and activation
of rules by the wrong triggers. Additional errors increase
the likelihood of a delivery delay due to the time needed
to compensate. Thus, when there is a dispatcher or driver
error, the likelihood of adverse consequences increases
when the carrier has latent conditions that enable or tol-
erate exceeding HOS limits. On the other hand, if latent
conditions support adherence to HOS limits, an error is
less likely to have adverse consequences.

Hypothesis 3 (H3). A carrier's record of
hour-of-service violations moderates the like-
lihood that an active failure by a
(a) dispatcher or (b) driver results in delayed
delivery, such that the likelihood of
delayed delivery will be enhanced for ship-
ments by carriers with more hours-of-service
violations.

3.2.3 | Vehicle maintenance violations

A carrier's record of vehicle maintenance violations reflects
its tolerance for keeping vehicles needing maintenance in
service. Managerial resident pathogens include investments
in poorly designed or aging vehicles prone to maintenance
issues (Britto et al., 2010), a policy of deferring mainte-
nance (Hubbard, 2003), limited spending on vehicle main-
tenance (Miller & Saldanha, 2016), and financial incentives
for drivers to keep vehicles on the road. Technology resi-
dent pathogens encouraging vehicle maintenance viola-
tions include poor TMS maintenance scheduling modules,
lack of onboard maintenance indicators, dispatchers
encouraging drivers to ignore onboard maintenance indica-
tors, and dispatchers' inability to collate, analyze, and act
on ELD maintenance data. Social resident pathogens
include the rationalized myth that staying in service is pref-
erable to shutting down for scheduled maintenance.

Managerial defensive layers include driver incentives
for following vehicle maintenance schedules, priority on
keeping vehicles well maintained, driver penalties for defer-
ring required maintenance, and a policy of purchasing only
new or well-maintained used vehicles. Technology defen-
sive layers include ELDs providing real time data on engine
conditions, sensing devices, devices that lock the ignition of
a vehicle with a maintenance issue, and tamper-proof warn-
ing signals. Social defensive layers are based on norms
related to the importance of preventive maintenance.

If a driver commits an error while driving a poorly
maintained vehicle, delayed delivery is more likely
because of the increased likelihood of a breakdown while
driving extra miles to remedy it. On the other hand, a car-
rier that exhibits pristine vehicle maintenance compliance
has defensive layers that lessen the impact of unexpected
dispatcher and driver errors. Thus, when a dispatcher or
driver makes an error, the likelihood of adverse conse-
quences increases when the carrier has latent conditions
that enable vehicle maintenance violations.

Hypothesis 4 (H4). A carrier's record of
vehicle maintenance violations moderates the
likelihood that an active failure by a
(a) dispatcher or (b) driver results in delayed
delivery, such that the likelihood of delayed
delivery will be enhanced for shipments by
carriers with more vehicle maintenance
violations.

3.2.4 | Unfit driver violations

A carrier's record of unfit driver violations indicates its
tolerance of driving by ill, unlicensed (Hagberg
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et al., 1995), or insufficiently rested drivers. Managerial
resident pathogens include incentives encouraging
drivers to drive or face no pay, and a policy of hiring
drivers with questionable driving records (Granot, 1998;
Miller, Saldanha, et al., 2017b) or less qualified drivers
who are unable to find jobs with higher-paying carriers
(Swartz et al., 2017) to reduce costs (Miller, Saldanha,
et al., 2018a). Social resident pathogens include the ratio-
nalized myth that an available truck with no driver is
wasted capacity (Hubbard, 2003), and scripts justifying
driving while ill, unlicensed, or fatigued.

Unfit driving increases driver stress, due to fear of los-
ing their livelihood or qualifying credentials. If an error
occurs for a carrier with stressed, fatigued, or poorly qual-
ified drivers, adverse consequences are more likely to
result. On the other hand, policies and norms ensuring a
carrier's drivers are qualified, licensed, and experienced
form defensive layers that prevent resident pathogens
from intensifying the relationship between an error and
adverse consequences. Thus, when a dispatcher or driver
commits an error, the likelihood of adverse consequences
is greater if the carrier's latent conditions enable or toler-
ate unfit drivers.

Hypothesis 5 (H5). A carrier's record of
driver fitness violations moderates the likeli-
hood that an active failure by a (a) dispatcher
or (b) driver results in delayed delivery, such
that the likelihood of delayed delivery will be
enhanced for shipments by carriers with more
driver fitness violations.

3.3 | Moderating effect of latent
conditions on delay length

The length of delivery delay is an important supply chain
outcome in the same way a patient's length of stay is an
important healthcare outcome. In a tightly coupled sup-
ply chain, every minute of delivery delay translates into
revenue loss. When shifting defensive layers contain
more holes, the holes align more often, and the severity
of adverse consequences increases. By analogy, if a
patient with weak defensive layers is exposed to a virus,
the patient is not only more likely to contract an illness
(analogous to likelihood of delay), he or she is also likely
to experience more severe symptoms (analogous to
length of delay). In addition to the patient's immune sys-
tem, other defensive layers include the patient's overall
health, access to medical care, socioeconomic status, and
population density. The weaker the defensive layers, the
more holes each layer has (Reason, 2000) and the sicker
the patient will become if exposed to a virus. Similarly,

we expect that a carrier's latent conditions moderate the
relationship between errors and delay time.

We hypothesize that dispatcher errors are associated
with longer delivery delays than driver errors. Dispatcher
errors occur earlier in the process and can have a cumu-
lative effect; a driver may already be dealing with a delay
when pulling away from the loading dock. Like the bull-
whip effect, the magnitude of the delay grows as its
source is farther from the impact.

Hypothesis 6a (H6a). A carrier's record of
unsafe driving violations moderates the rela-
tionship between an active failure and delivery
delay, such that the difference in delay
between dispatcher and driver active failures
will be enhanced for shipments transported by
carriers with greater unsafe driving violations.

Hypothesis 6b (H6b). A carrier's record of
hours-of-service violations moderates the rela-
tionship between an active failure and deliv-
ery delay, such that the difference in delay
between dispatcher and driver active failures
will be enhanced for shipments transported
by carriers with greater hours-of-service
violations.

Hypothesis 6c (H6c). A carrier's record of
vehicle maintenance violations moderates the
relationship between an active failure and
delivery delay, such that the difference in
delay between dispatcher and driver active
failures will be enhanced for shipments trans-
ported by carriers with greater vehicle mainte-
nance violations.

Hypothesis 6d (H6d). A carrier's record of
driver fitness violations moderates the relation-
ship between an active failure and delivery
delay, such that the difference in delay
between dispatcher and driver active failures
will be enhanced for shipments transported by
carriers with greater driver fitness violations.

4 | METHOD

4.1 | Data sources

4.1.1 | Level 1

Shipment-level data were collected from the TMS of a
Fortune 500 company that we call LIM. It produces home
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furnishings, appliances, consumer electronics, and house-
wares, with annual revenues of more than $20 billion;
LIM's freight and warehousing expenses comprise 16% of
revenue. Prior to our data collection, LIM had invested
over $1 billion in advanced systems and technology from
leading vendors and installed next-generation GPS track-
ing technology on every truck, updated every 30 s. How-
ever, despite substantial investments in technology
defensive layers, some shipments continued to be lost,
delayed, or routed to incorrect locations. Ten to fifteen
LIM employees support the �600 shipments active at any
given time; resolving a problem can require 3–4 h, and
our discussions with LIM supervisors indicated that dis-
patcher interventions sometimes exacerbate problems.
We define a shipment as an entire 53-foot trailer filled
with LIM products, packed full cube. We worked closely
with 11 LIM managers, highly familiar with LIM's flow
of products, information, customers, and logistics, to
obtain data on its shipments from 2014 to 2016, accurate
to the second. We restricted the data to carriers that
transported 100 or more of LIM's shipments during
that time, to avoid the potential for skewed violations
data (Miller, Saldanha, et al., 2018a). This reduced the
sample size by only 399 shipments (�0.1% of the sample),
indicating LIM used very few spot market carriers. The
final sample consisted of 299,399 shipments conveyed by
97 carriers. The data was checked for downloading errors
by LIM's IT personnel. To further ensure data integrity, a
member of the research team and a LIM employee indi-
vidually checked the downloaded data, then jointly
examined it.

4.1.2 | Level 2

Data on the artifacts of carrier latent conditions (unsafe
driving, HOS, vehicle maintenance, and driver fitness
violations) was collected for LIM's carriers from the Fed-
eral Motor Carrier Safety Administration's (FMCSA)
Compliance, Safety, and Accountability (CSA) program
dataset, which rates carriers in safety categories known
as BASICs (Behavior Analysis and Safety Improvement
Categories) (Miller, Schwieterman, & Bolumole, 2018b).
A carrier's CSA score for a BASIC is the sum of its viola-
tions, as ticketed or reported from roadside inspections,
weighted by severity and recency, yielding a 0–30 score.
A CSA score of 0 = 0th percentile (best possible score),
2.31 = 25th percentile, 4.72 = 50th percentile,
8.17 = 75th percentile, and 30 = 100th percentile (worst
possible score). CSA scores are specific to a BASIC, since
they are calculated as percentiles, thus they cannot be
compared or combined with scores from other BASICs
(Federal Motor Carrier Safety Administration, 2019).

4.2 | Dependent variables

The dependent variables were based on LIM's definition of
on-time delivery. A third-party data analytics firm calcu-
lates, for LIM, the scheduled delivery time for each ship-
ment as the driving time between the origin–destination
city pair, based on speed limits, mandated break times,
and a buffer. The scheduled delivery times are agreed to
by LIM and the selected carrier. Upon delivery, actual
arrival times are recorded in LIM's TMS. Shipments arriv-
ing more than 15 min past the scheduled delivery time are
designated as late. PROB[LATE] is a binary variable where
0 = on time and 1 = late. PROB[LATE] was the dependent
variable for testing H1–H5 (n = 299,399), which assess the
likelihood a shipment will be delivered late. We calculated
DELAY for the subset of the analytic dataset comprised of
only the late deliveries (n = 16,293) (H6a–H6d) as the dif-
ference between the scheduled delivery time and the
actual delivery time.

4.3 | Independent variables

Table 3 summarizes the variable operationalization, and
Table 4 provides descriptive statistics.

4.3.1 | Active failures

Upon arrival at the destination, the driver, dock manager,
LIM's arrival manager, and dispatcher assign an arrival
code (previously listed in Table 2) to indicate issues with
the shipment or “normal delivery—no issues.” Because it
is impossible to measure most errors directly, since they
are not reported and the driver or dispatcher may not
even be aware of them, we operationalized errors as their
immediate effects, which are reported as shipment arrival
codes. For H1–H5, Dispatcher Error is a binary variable
with a value of 1 if an arrival code is between 2 and
10 and a value of 0 otherwise (see Table 2). Driver Error
is a binary variable with a value of 1 if an arrival code of
11–17 was selected and a value of 0 otherwise. Error Type
(H6a–H6d) is a binary variable with a value of 1 for
arrival codes 2–10 (dispatcher errors) and 0 for arrival
codes 11–17 (driver errors).

4.3.2 | Artifacts of carrier latent conditions

The artifacts of latent conditions were operationalized as
the carrier's percentile rank for each BASIC during the
time period of the shipment data. Unsafe driving viola-
tions are defined by the CSA program as operating a
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TABLE 3 Operationalization of variables

Variable Operationalization

Full sample (H1–H5)
Late shipments
subsample (H6a–H6d)

Mean SD n Mean SD n

Level one: Shipments

Active failures

Dispatcher error 0 = no dispatcher error
1 = dispatcher error

0.04a 299,399

Driver error 0 = no driver error
1 = driver error

0.04 299,399

Error type 0 = driver error
1 = dispatcher error

0.58 16,293

Dependent variables

PROB[LATE] 0 = on time
1 = late

0.05 299,399

DELAY Difference between the scheduled and actual
delivery time (minutes)

754.93 1791.53 16,293

Level two: Carriers

Latent conditions

Unsafe driving
violations

BASIC percentile rank (0–30) 1.80b 1.78 97 1.80 1.78 97

Hours-of-service
violations

BASIC percentile rank (0–30) 0.44 0.68 97 0.44 0.68 97

Vehicle maintenance
violations

BASIC percentile rank (0–30) 3.54 2.90 97 3.54 2.90 97

Driver fitness violations BASIC percentile rank (0–30) 0.07 0.11 97 0.07 0.11 97

aBecause standard deviations are not meaningful for binary variables, they are not reported.
bThe latent conditions values are the same in the full sample and late shipments subsample because they are measured at the carrier level, not the shipments
level.

TABLE 4 Descriptive statistics

a. Shipments

Shipments with errors Shipments delivered late
% Shipments with
errors delivered laten % n %

Dispatcher errors 11,349 3.8% 9,482 3.2% 83.5%

Driver errors 12,845 4.2% 6,811 2.3% 53.0%

All shipments 24,194 8.1% 16,293 5.4% 67.3%

b. Carriers

Measure Mean SD

Number of tractors owned 812.13 2,306.19

Number of trailers owned 1,999.39 5,161.18

Number of tractors leased 256.38 739.03

Number of trailers leased 1,594.47 12,914.49

Number of vehicles 1,246.00 3,558.67

Annual vehicle miles 80,815,333.00 182,293,731

Number of drivers 1,175.41 2,789.53
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vehicle in a dangerous or careless manner, including
speeding, reckless driving, improper lane changes, texting
while driving, not wearing seatbelts, and operating in
adverse weather conditions. HOS violations are defined as
operation of a vehicle by a driver who is fatigued, ill, in
noncompliance with HOS regulations, or who does not
retain records of duty status for 6 months. Vehicle mainte-
nance violations include inoperative brakes, lights, and
other mechanical defects, improper cargo securement,
failure to make required repairs, failure to prevent
shifting cargo, spilled or dropped cargo, and overloading.
Driver fitness violations are defined as truck operation by
drivers who are unfit due to lack of training, experience,
or medical qualifications, including failing to have a valid
commercial driver's license, and failing to maintain
driver qualification files (FMCSA, 2019).

4.4 | Control variables

The standardized values of three control variables were
included. Carrier ownership ratio is the ratio of vehicles a
carrier owns versus leases, which can impact how well the
carrier maintains its fleet; a carrier concerned about resale
value may invest more in maintenance (Scott &
Nyaga, 2019). Carrier annual vehicle miles is the number
of miles a carrier's vehicles are driven annually, to control
for differences between carriers in the distance shipments
are transported. Carrier number of drivers is the number of
drivers per carrier; it controls for carrier size, which is
related to resources reflecting a carrier's ability to invest in
technology (Cantor et al., 2009; Cantor et al., 2016; Man-
rodt et al., 2003), visibility to monitoring agencies (Miller,
Golicic, & Fugate, 2017a), and frequency of violations
(Scott et al., 2021). Additional controls employed in the
robustness checks are described below.

4.5 | Models and analysis

The hypotheses were tested using maximum likelihood
two-level mixed effects regression analysis, where H1–H5
used generalized mixed effects models and H6 used linear
mixed effects models. Mixed effects modeling accounts for
the clustered nature of the data (Bliese et al., 2018;
Raudenbush & Bryk, 2002). Because it is particularly well-
suited to cross-level interactions between imbalanced clus-
ters (McNeish & Kelley, 2018), mixed effects modeling is
ideal for our sample and hypotheses. Multilevel samples
should have a minimum of 30 observations at each level
to ensure statistical power. Level 1 in our analysis is ship-
ments (n = 299,299 in the full sample, n = 16,293 in the
late shipments subset), which are nested within carriers

(Level 2, n = 97 in the late shipments subset). The lme4
(Bates et al., 2015) and multilevel (Bliese, 2016) packages
in R for Windows 3.6.0 were used for analysis.

Prior to hypothesis testing, we ensured that model
specification was correct (Bliese et al., 2018). To establish
the two-level models, we calculated the intra-class corre-
lation coefficients (ICC[1]) for each dependent variable
(0.14 for PROB[LATE], 0.12 for DELAY), which indicate
14% of the variance in PROB[LATE] in the full dataset is
attributable to carrier-level effects and 12% of the vari-
ance in DELAY in the late shipments subset is attribut-
able to carrier-level effects. These values are acceptable,
following conventions for multilevel empirical models
(Bliese et al., 2018). Next, we examined whether the Level
1 intercepts and slopes varied randomly by estimating a
fixed effects, random intercept-fixed slope, and random
intercept-random slope model for each dependent and
independent variable combination (three sets of models).
In each case, the random intercept-random slope model
was the best fitting model,3 thus, all subsequent models
include both random effects. As an illustration, using
Raudenbush and Bryk's (2002) notation, the equations
for PROB[LATE] predicted by dispatcher error4 are:

PROB LATE½ �ij ¼ β0jþβ1jDispatcher Errorijþ rij ð1aÞ

β0j ¼ γ00þ γ01Violationsjþu0j ð1bÞ

β1j ¼ γ10þ γ11Violationsjþu1j ð1cÞ

PROB LATE½ �ij ¼ γ00þ γ01Dispatcher Errorijþ γ10

þ γ11 Violationsj�Dispatcher Errorij
� �

þμ1jDispatcher Errorijþu0jþrij
ð2Þ

Similar equations were used for PROB[LATE] predicted by
driver error and for DELAY predicted by error type. H1–H5
were tested using generalized linear mixed effects regres-
sion (logit) analysis because of the binary dependent vari-
able (PROB[LATE]), while H6 was tested using linear
mixed effects regression analysis. Table 5 contains the
bivariate correlation coefficients. Predicted interaction plots
were used to interpret significant cross-level interactions.

5 | RESULTS

5.1 | Main effects

The mixed-effects regression models examined the main
effects of active failures by dispatchers and drivers on the
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shipper's loads, nested within carriers, moderated by car-
rier records of the four types of violations. The models of
the main effects for the likelihood that a shipment with a
dispatcher error or driver error will be delivered late are
presented in Table 6. H1a, which predicted the presence
of a dispatcher error will increase the likelihood of late
delivery, was tested as the main effect of dispatcher error
on PROB[LATE]. As reported in Model 1 (Table 6), this
effect was positive and significant (γ10 = 6.06, p < .001).
Deliveries associated with a dispatcher error are signifi-
cantly more likely to be late than those not associated
with a dispatcher error. Similarly, H1b predicted that the
presence of a driver error would increase PROB[LATE].
Model 2 indicates this effect was also positive and

significant (γ20 = 4.29, p < .001). Deliveries associated
with driver errors are significantly more likely to be late.
Thus, H1a and H1b were supported.

5.2 | PROB[LATE] interactions

H2–H5 tested the cross-level interaction effects,
predicting the carrier's record of violations for unsafe
driving, HOS, vehicle maintenance, and driver fitness
violations would exacerbate the likelihood that a dis-
patcher error will result in a late delivery, and the likeli-
hood that a driver error will result in a late delivery.
Tables 7 and 8 contain the cross-level interaction models.

TABLE 5 Correlation coefficients

a. Level 1, Full sample (n = 299,399)

1 2 3 4 5 6 7 8 9 10

1. PROB[LATE]

2. Dispatcher Error 0.68a

3. Driver Error 0.44a �0.04a

4. Unsafe Driving Violations 0.01a �0.01a 0.00a

5. HOS Violations 0.00 �0.03a 0.04a 0.73a

6. Vehicle Maintenance Violations 0.03a 0.00 0.11a 0.22a 0.58a

7. Driver Fitness Violations �0.01a �0.02a �0.01a 0.41a 0.29a 0.07a

8. Carrier Vehicle Ownership Ratio 0.02a 0.04a �0.04a 0.20a 0.03a �0.06a 0.16a

9. Carrier Annual Vehicle Miles 0.00 0.07a �0.04a �0.13a �0.24a �0.18a �0.18a 0.20a

10. Carrier Number of Drivers �0.01a 0.06a �0.03a �0.18a �0.23a �0.21a �0.15a 0.10a 0.87a

b: Level 1, Subsample of late shipments (n = 16,923)

1 2 3 4 5 6 7 8 9

1. DELAY

2. Error Type 0.13a

3. Unsafe Driving Violations 0.02a �0.07a

4. HOS Violations 0.04a �0.13a 0.50a

5. Vehicle Maintenance Violations 0.02a �0.11a 0.11a 0.67a

6. Driver Fitness Violations �0.02a �0.02a 0.36a 0.18a 0.04a

7. Carrier Vehicle Ownership Ratio �0.04a 0.07a 0.13a �0.18a �0.19a 0.17a

8. Carrier Annual Vehicle Miles 0.08a 0.11a �0.20a �0.29a �0.22a �0.19a 0.17a

9. Carrier Number of Drivers 0.05a 0.07a �0.27a �0.27a �0.23a �0.15a 0.08a 0.87a

c. Level 2 (n = 97)

1 2 3 4

1. Unsafe Driving Violations

2. HOS Violations 0.67a

3. Vehicle Maintenance Violations 0.24a 0.58a

4. Driver Fitness Violations 0.34a 0.42a 0.13

ap < .05, Error Type = 1 for dispatcher error, 0 for driver error.
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In each table, Model 1 contains the full model for main
effects only, including un-hypothesized main effects for
the fixed effects variables, and subsequent models test the
hypothesized cross-level interaction effects. Model 8 con-
tains the full model, including both main effects and
cross-level interaction effects. Table 7 summarizes the
results of the tests for moderating effects of artifacts of
carrier latent conditions on the relationship between dis-
patcher errors and likelihood of late delivery. The cross-
level interaction terms for unsafe driving (Model 4) and
vehicle maintenance (Model 6) violations were positive,
but not significant, thus, H2a and H4a were not
supported. There were significant, positive cross-level
interactions between dispatcher errors and the carrier's
record of HOS (Model 2, γ12 = 0.42, p < .01) and driver
fitness violations (Model 3, γ14 = 0.87, p < .001). Figure 4
illustrates these effects, such that the relationship
between a dispatcher error and the probability of a late
delivery is greater for carriers with a record of more HOS
violations. While unfit driver violations has a similar pos-
itive interaction effect, there is also a strong negative
level 2 main effect. Thus, H3a was supported and H5a
was marginally supported.

Table 8 contains the results of the tests for moderat-
ing effects of artifacts of carrier latent conditions on the
relationship between driver errors and the likelihood of
late delivery. The cross-level interactions between a
driver error and the carrier's record of unsafe driving
(Model 2) and vehicle maintenance violations (Model 4)

were not significant. Thus, H2b and H4b were not
supported. The cross-level interaction between a driver
error and the carrier's record of HOS violations was in
the expected direction and was significant (Model 3,
γ12 = 0.24, p < .10), supporting H3b. There was a signifi-
cant cross-level interaction between a driver error and
driver fitness violations (Model 5, γ14 = 1.89, p < .001),
supporting H5b. Figure 5 illustrates these effects.

Our results also reveal some intriguing additional
effects that were not hypothesized. When considering
errors by either dispatchers (Model 1, Table 7) or drivers
(Model 1, Table 8) as main effects, driver fitness viola-
tions are a significant negative predictor of the carrier's
average PROB[LATE]; none of the other violations main
effects was significant. Thus, only driver fitness violations
were related to reduced carrier average likelihood of a
delivery delay. Further, while the test of H4b is not signif-
icant (Model 4, Table 8), the cross-level interaction
between driver active failures and carrier vehicle mainte-
nance violations is significant and negative when consid-
ering all the cross-level interactions simultaneously
(Model 8, Table 8).

5.3 | DELAY interactions

Table 9 contains the results of the moderation tests for
artifacts of a carrier's latent conditions on the relation-
ship between dispatcher vs. driver errors (Error Type) and

TABLE 6 PROB[LATE] due to dispatcher or driver error: Mixed effects logistic regression results

Level and variable Model 1 Model 2

Level 1 Intercept (γ00) 3.69*** (0.10) �3.22*** (0.07)

H1a Dispatcher Error (γ10) 6.06*** (0.11)

H1b Driver Error (γ20) 4.29*** (0.11)

Level 2 Controls

Motor Carrier Vehicle Ownership Ratio (γ01) 0.05 (0.08) 0.00 (0.07)

Motor Carrier Annual Vehicle Miles (γ02) �0.04 (0.15) 0.33** (0.10)

Motor Carrier Number of Drivers (γ03) �0.23 (0.15) �0.31** (0.10)

Variance components

Within-carrier (L1) variance (σ2) 3.29 3.29

Intercept (L2) variance (τ00) 0.78 0.58

Slope (L2) variance (τ11) 0.84 2.01

Intercept-slope (L2) covariance (τ01) �0.56 �0.38

Additional information

�2 log likelihood (ML) �34,253.30 �46,829.10

Conditional R2 0.33 0.15

Note: All models used motor carriers with over 100 observations only; n = 299,399, k = 97. Dispatcher Error coded 1 for error and 0 for no error. PROB[LATE]
ICC(1) = 0.14, random effect: Dispatcher Error Centered (γ10), dependent variable; 0 = on time, 1 = late. †p < .10, *p < .05, **p < .01, ***p < .001.
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the length of time for which a late delivery is delayed,
H6a–d. Error Type was significant and positive (Model 1,
γ10 = 517.42, p < .001), thus, the average length of delay
for late deliveries was greater for dispatcher errors. The
cross-level interactions between Error Type and the car-
rier's record of unsafe driving (Model 2) and driver fitness
violations (Model 5) were not significant, thus, H6a and
H6d were not supported. There were significant cross-
level interactions between Error Type and the carrier's
record of HOS (Model 3, γ12 = 197.50, p < .05) and vehi-
cle maintenance violations (Model 4, γ13 = 37.92,
p < .05), supporting H6b and H6c. Figure 6 illustrates
that the difference in length of delay for dispatcher
vs. driver errors was greater for shipments transported by
carriers with a record of more HOS and vehicle mainte-
nance violations, respectively.

5.4 | Robustness checks

We conducted additional analyses to test the robustness
of our findings. In addition to errors and carriers' latent
conditions, it is possible that factors such as weather and
seasonal traffic patterns could contribute to the probabil-
ity of a late delivery. Therefore, our first set of robustness
checks added Level 1 fixed effects to control for time of
year and calendar year in all significant cross-level inter-
action models. We created dummy-coded fixed effects by
quarter (where January–March represents Q1) and year
(2014–2016). The Level 1 calendar effects indicate differ-
ences across both seasons and calendar years in the likeli-
hood of late delivery. Models 6 and 7 (Table 7) replicate
the significant results for H3a and H5a, above and
beyond the calendar effects. Likewise, Model 7 (Table 7)
replicates the significant result for H5b. Finally, Models
6 and 7 (Table 8) replicate the significant results for H6b
and H6c above and beyond the calendar effects. Model
7 (Table 8) failed to replicate the significant result for
H3b, thus, the moderation effect of HOS carrier latent
conditions in exacerbating the likelihood of a delivery
delay following a driver error was not robust to calendar
effects.

Next, to test for Level 2 (carrier level) endogeneity we
replicated all the hypothesis tests using group mean-
centered independent variables (Bliese et al., 2018) in
Tables 10–12. While mixed effects models are the most
appropriate approach for the nesting of our data, it is also
important to test for Level 2 (carrier level) endogeneity.
Thus, as a robustness check, we replicated all analyses
using group mean-centered independent variables while
controlling for the predictors' group means (Bliese
et al., 2018), combining the benefits of mixed effects
models with protection against the endogeneity of fixedT
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effects modeling. This approach represents the “gold
standard” for estimating cross-level interaction effects
(Aguinis et al., 2003; Antonakis et al., 2019; Bell &
Jones, 2015; Bliese et al., 2020; Certo et al., 2017;
McNeish & Kelley, 2018). We centered (demeaned) the
independent variables based on the group mean
(e.g., Dispatcher Errorij –Dispatcher Errorj) for each
observation while also adding an additional fixed effect
control for the group mean (e.g., Dispatcher Errorj).
Therefore, in the robustness checks, the independent var-
iable for the PROB[LATE] models was the presence of a
dispatcher error relative to the carrier's proportion of
shipments with dispatcher errors. Similarly, the indepen-
dent variable for the driver error models was the presence
of a driver error relative to the carrier's proportion of
shipments with driver errors. The independent variable
for the DELAY models was the presence of a dispatcher
error relative to the carrier's ratio of dispatcher to driver
errors. These models used the group mean centered pre-
dictors and added a fixed effect for the group mean of the
original predictor from the hypothesis test (i.e., group
average rate of dispatcher error). Tables 10–12 corre-
spond to Table 7–9, where all hypothesized interactions
were examined, and the significant interactions were
tested again using the calendar fixed effects. In Table 10,
Models 3 and 6 and Models 5 and 7 provide robust sup-
port for the moderating effects of HOS violations and
driver fitness violations in H3a and H5a, respectively.
Likewise, in Table 11 Model 3 and Models 5 and 7 provide
robust support for the moderating effects of HOS viola-
tions and driver fitness violations in H3b and H5b,
respectively. Similar to the results using time-based fixed
effects above, Model 6 (Table 11) failed to support the
moderating effect of HOS violations above and beyond
the calendar effects. Finally, in Table 12, Models 4 and
7 and Models 5 and 8 provide robust support for the mod-
erating effects of HOS violations and vehicle mainte-
nance violations in H6b and H6c, respectively. In sum,
using the “gold standard” of group mean centering pro-
vided robust support for the results of our hypothesis
tests, while also accounting for potential Level
2 endogeneity.

The online supplement contains the results of fur-
ther robustness analyses of our hypothesized models.
Tables S1–S3 show corresponding cross-level interac-
tion models that only control for the specific Level
2 moderator, to address the potential for
multicollinearity between the artifacts of carrier latent
conditions. Tables S4–S6 show corresponding cross-
level interaction models for our significant hypothesis
tests that add a control for standardized geospatial dis-
tance. Tables S7–S9 contain estimated models for our
significant results using a penalized maximumT
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likelihood Bayesian estimation, which Browne and
Draper (2006) suggest has advantages over likelihood-
based methods, in terms of unbiasedness and effi-
ciency. Generally, each set of robustness analysis find-
ings mirror the results of our hypothesized models,
further supporting their robustness.

6 | DISCUSSION

6.1 | Key findings

Errors should be expected in complex systems
(Reason, 2000); indeed, 5.44% of LIM's deliveries (over

FIGURE 5 Predicted plots for cross-level interactions of carrier violations with driver errors, with HOS and driver fitness violations

predicting the probability of late delivery

FIGURE 4 Predicted plots for cross-level interactions of carrier violations with dispatcher errors, with HOS and driver fitness violations

predicting the probability of late delivery

FIGURE 6 Predicted plot for cross-level interaction of shipment-level error type with carrier violations predicting the degree of DELAY
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14 per day) were delayed due to errors by dispatchers or
drivers. Thus, every few hours, LIM must address a dis-
ruption in its 24/7 operations. This is a shockingly large
number, particularly for a company like LIM, which has
made substantial investments in error-prevention tech-
nology. This research led to important findings about
human errors and delivery delays. Both dispatcher and
driver errors were associated with increased likelihood of
late delivery, and dispatcher errors were associated with
longer delays than driver errors. Most artifacts of carrier
latent conditions (HOS, driver fitness, and vehicle main-
tenance violations) exacerbated this effect. Only unsafe
driving violations was not a significant moderator in any
of the models.

Further, although avoiding late deliveries is the
implied reason for practices resulting in unsafe driving,
driver fitness, HOS, and vehicle maintenance violations,
our main effects analysis reveals that only driver fitness
violations were associated with reduced likelihood of a
late delivery and none of the violations main effects was
related to significant reductions in delay time. Thus, the
findings suggest very little benefit to cutting safety cor-
ners in the interest of on-time delivery.

6.2 | Implications for research

This research makes important contributions to the tech-
nology management literature by demonstrating error
prevention technologies are not necessarily a turnkey
solution. Humans provide an important interface with
technology through the content and timeliness of their
inputs, their ability to collate and analyze the data gener-
ated by technology, and their development of insightful
policies and priorities based on the technology's outputs.
This research highlights the importance of this
technology-human interface. Technology cannot prevent
all possible human errors. However, understanding latent
conditions are more actionable than errors leads to con-
crete recommendations for improving defensive layers
and minimizing resident pathogens through investments
in technology, managerial priorities, and policies. For
example, the health information systems-induced errors
described by Yusuf and Sahroni (2018) could be
addressed by improving defensive layers through
improved process design and training. Peysakhovich
et al. (2018) cited inadequate monitoring and cross-
checking by pilots as responsible for more than 80% of
aircraft accidents; improving defensive layers by
investing in eye tracking technology could provide a non-
invasive, relatively inexpensive means for reducing moni-
toring errors and resulting accidents. Scott et al.'s (2021)
description of the unintended consequence of driversT
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whose HOS are monitored by ELDs subsequently increas-
ing other undesired behaviors such as speeding, could be
addressed through eliminating the resident pathogen of
mileage-based compensation and replacing it with a
defensive layer of behavior-based compensation.

This research contributes to the supply chain litera-
ture by emphasizing the importance of a carrier's latent
conditions in intensifying the relationship between errors
and delivery delays. Management practices often focus
on directly preventing errors, which Reason (2000) likens
to swatting at individual mosquitoes. Reason (2000)
emphasizes the importance of focusing on latent condi-
tions that intensify the adverse consequences of active
failures, rather than on active failures, per se. Thus, the
greater benefit comes from “draining the swamp”
(Reason, 2000), removing or blocking resident pathogens.
Analogous to the relationship between assignable and
common causes of variability in statistical process con-
trol, while front-line supply chain operators frequently
commit errors, the outcomes are exacerbated by latent
conditions that only management can address.

This research further contributes to supply chain
research by considering human error as a source of deliv-
ery delays and moving beyond the assumption that tech-
nology can automate human variability out of processes.
There are many factors that can cause a delayed delivery
but developing a better understanding of the role of
active failures and latent conditions helps advance
knowledge on preventing and reducing delivery delays.

6.3 | Implications for practice

Although every supply chain journey involves a dynamic
mix of unavoidable factors like weather or traffic condi-
tions, overlaid on these factors is the potential for dis-
patcher or driver errors to delay delivery, exacerbated by
carrier latent conditions. Regardless of whether errors
occur at a carrier's headquarters or on the road, the result
is the need to reschedule delayed deliveries and appease
downstream customers.

How can latent conditions be addressed, to minimize
the impact of errors? According to NAT, adverse conse-
quences occur when defensive layers are inadequate
(Reason, 2000). Prior research indicates that some high-
risk organizations have achieved very low adverse conse-
quence rates through careful design and management of
technology, people, and processes (Gaba, 2000), becom-
ing high-reliability organizations by developing defensive
layers that proactively neutralize resident pathogens
(Bigley & Roberts, 2001; Ruchlin et al., 2004; Waller &
Roberts, 2003).
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Managerial defensive layers, such as a policy of
platooning four trucks together, provide four drivers to
double-check directions and proctor each other's driving
behavior. Similarly, two massive mega-trucks carrying
the same amount of cargo as three standard trucks have
proportionally fewer opportunities for human errors.
Other managerial defensive layers include reduction of
the approved carrier list by removing those whose viola-
tions record indicates resident pathogens. A shipper
could contract only with high-compliance carriers having
few CAS violations, dropping those with a history of
unsafe driving from consideration or limiting carriers to
only those with well-integrated technology-enabled sys-
tems that facilitate 360� visibility. For a high-volume sup-
ply chain connection, such as from a factory to a major
distribution center, a shipper could contract for dedicated
services with a limited set of trusted carriers. New tech-
nologies improve truck visibility and provide updated
ETA information, allowing a dispatcher to adjust recipi-
ents' expectations, while other technologies allow valida-
tion of vehicle type, licenses and permits prior to
dispatching.

Defensive layers can also be strengthened through
investments in technology to minimize resident patho-
gens through error proofing (Norman, 1981). AI and
autonomous vehicle technologies reduce the adverse con-
sequences of errors, as automation replaces drivers and
dispatchers. Predictive analytics, including AI systems,
can reduce the impact of dispatcher errors. For example,
ClearMetal analyzes supply chain lanes to place con-
tainers more cost efficiently (Banker, 2016), and IBM's
Watson Research Center focuses on real-time analytics
for traffic prediction and multimodal dynamic routing
(IBM, 2017).

6.4 | Limitations

Like all research, our design had several limitations. It
was based on a deep dive into the operations of a single,
large shipper, potentially limiting generalizability. How-
ever, the use of a single shipper also contributes to the
strength of our findings by controlling for shipper-level
effects; LIM's investments in technologies are constant
across all shipments. LIM had made very substantial
investments in technology designed to prevent dispatcher
and driver errors, thus we expect that shippers with less
investment in technology will have a greater likelihood
of adverse consequences resulting from an error, as well
as longer delivery delays. Further, LIM draws its drivers
from the same pool of carriers used by many other large
shippers, thus, we expect carrier effects to be similar
across shippers.T
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Our operationalization of active failures was based on
LIM's arrival codes, which are biased toward rule-based
and knowledge-based errors, whose immediate effect is
more substantive than skill-based errors. Tapping into
the “stupid mistakes” that constitute many skill-based
errors is not possible using archival data sources, since
most would not be reported. We encourage future
research to study errors using alternative data sources,
such as blogs, surveys, and interviews with drivers and
dispatchers. Further, by operationalizing errors using
arrival codes, we acknowledge that there are likely addi-
tional errors not included in the analysis because they
did not result in late delivery. Similarly, we
operationalized carrier latent conditions based on viola-
tions as a proxy for their tacit values. More direct mea-
surement of technology investments and surveys related
to carrier policies, priorities, and practices should yield
interesting insights into resident pathogens and defensive
layers.

6.5 | Opportunities for future research

The descriptive statistics in Table 4 revealed some
intriguing findings. First, errors do not necessarily result
in delivery delays; a third of the errors, overall, were not
associated with any delivery delay. Second, although
more shipments had driver errors than dispatcher errors
(12,845 vs. 11,349), dispatcher errors were much more
likely to be associated with a delivery delay (83.5% of dis-
patcher errors vs. 53% of driver errors). This may be due
to dispatcher errors being more serious, drivers develop-
ing strategies to compensate for their own errors, or other
reasons that pose interesting opportunities for future
research.

The timing of the data provides an opportunity to exam-
ine important relationships before and after the FMCSA's
ELD mandate went into effect. Our data is for shipments
conveyed between 2014 and 2016. ELD vendors have been
able to self-certify compliance of their ELDs with the
FMCSA mandate since February 16, 2016. Although we do
not have information about which of LIM's carriers had
ELDs installed when the shipments in our dataset took
place, very few leading carriers were self-certified during
this period. Since December 18, 2017, all long-haul carriers
have been subject to the ELD mandate, unless their vehi-
cles are grandfathered, thus the future may be very different
as ELDs are required to collect more data. This provides an
interesting opportunity for a natural experiment, examining
delivery delays and other important outcomes before and
after the ELD mandate went into effect.

Perhaps the most intriguing finding is that, although
many technologies are marketed as turnkey error

prevention solutions, human errors still occur, even in a
shipper using state-of-the-art technologies. Although
many minor errors can be considered “stupid mistakes,”
even minor errors can have adverse consequences. Like
LIM, many shippers and carriers have made substantial
investments in defensive layers in the form of technolo-
gies intended to prevent errors, yet our findings indicate
that these investments are not paying off as well as antici-
pated. Why is this the case? Does the problem lie in the
technologies, the interface between human operators and
the technologies, or elsewhere? How is this related to
latent conditions? Do error rates vary between shippers
and across carriers? Researchers need to dig into the
underlying drivers of these findings.

Similarly, there are many interesting opportunities
for future research related to carrier latent conditions.
For example, mileage-based pay uses an outcome-based
contract to align driver compensation with the carrier's
interests. Alternatively, carriers could consider various
forms of behavior-based contracts to incentivize behav-
iors expected to lead to desired outcomes (Zu &
Kaynak, 2012), potentially converting a managerial resi-
dent pathogen into a defensive layer. For example, a car-
rier could give drivers with no safety violations an early
opportunity to select their shipments or pay the safest
drivers a salary (guaranteed income). Research focused
on specific policies and priorities can help clarify how
specific resident pathogens and defensive layers interact.
Since our research constructs touch on regulators and
legal regulations, there are also many opportunities for
future research to dig more deeply into public policy
implications.

NAT offers a foundation for understanding human
errors and their potential for adverse consequences at all
levels in supply chains and in many other operations
management applications. We do not view our findings
as limited to the trucking context and look forward to
seeing broader applications of NAT and testing of the
generalizability of our findings to other settings.

7 | CONCLUSIONS

Although, “to err is human, to forgive divine,” supply
chains are not forgiving. Even a minor error by a truck
driver or dispatcher can translate into a delivery delay,
whose adverse consequences are intensified by carrier
latent conditions. Although we examined cross-level
interaction effects on individual shipments, the larger
implications are for the extended supply chain, where a
single delivery delay can have a cascading effect. Con-
sider the analogy of a flight whose arrival is delayed;
departing flights are delayed as they await transfer of the
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late flight's passengers, causing flights from other airports
to be subsequently delayed. The same cascading effect
occurs in supply chains, particularly those that are tightly
coupled with minimal slack, as downstream customers
wait for their materials, forcing their customers to wait,
and so forth.

Researchers and managers should not like what the
data about supply chain errors and carrier latent condi-
tions reveals. Resident pathogens in carrier latent
conditions foretell even more late deliveries in the future.
It is bad enough that so many violations occur, but what
makes it even worse is that cutting safety corners appears
to compound the adverse consequences of errors, rather
than leading to faster deliveries. This emphasizes the
importance of investments in technology and
reassessment of policies and priorities by carriers.

More broadly, this exploratory research suggests that
errors and latent conditions have a more pervasive effect
than most managers realize. This raises important con-
cerns for operations management, in general. For every
minute of time saved through process improvements
within a factory, there are hours of delay yet to be
reduced in its supply chains. After many decades of evo-
lution of supply chain practice, why have carriers with
worrisome latent conditions been able to continue to
operate in such a manner? It is our hope that future
research further extends understanding of how to address
latent conditions to minimize the impact of errors in vari-
ous contexts and move toward supply chains that are
high reliability, rather than high-risk, organizations.

ENDNOTES
1 The standard mileage-based pay is about $0.35 per mile for com-
pany drivers and $1.00 per mile for owner-operators. (https://
www.truckdriverssalary.com/) Drivers are expected to cover most
of their variable expenses, including food, tolls, fines for mainte-
nance issues, and speeding tickets; owner-operators must also
cover the fixed capital cost of vehicles.

2 In the United States, truck drivers are allowed to drive 11 h in a
14-h period (https://www.fmcsa.dot.gov/regulations/hours-
service/summary-hours-service-regulations). Canada allows truck
drivers to drive 13 h during a 14-h period (https://laws-lois.
justice.gc.ca/eng/regulations/SOR-2005-313/page-1.html), while
Mexico limits drivers to 8 h of daylight driving per day or 7 h of
nighttime driving (https://loadtrek.net/2018/07/14/operating-in-
mexico-hours-of-service-for-commercial-vehicles).

3 For PROB[LATE] predicted by dispatcher error, the �2 log likeli-
hood difference was 357.93, p < .001; for PROB[LATE] predicted
by driver error, the �2 log likelihood difference was 1833.40,
p < .001; for DELAY predicted by error type, the �2 log likelihood
difference was 89.46, p < .001.

4 PROB LATE½ �ij is the likelihood of late delivery for the ith ship-
ment for the jth carrier, β0j is the carrier-specific intercept for the
jth carrier, β1j is the carrier-specific slope for dispatcher error in

the jth carrier, and rij is the residual for the ith shipment in the
jth carrier. γ00 is the overall intercept for the likelihood of late
delivery across all carriers, γ01 captures how much the intercept of
likelihood of late delivery is expected to change for a one-unit
change in violations for carrier j, and u0j is a random effect for the
jth carrier that captures how much the intercept for that carrier
differs from the overall intercept after accounting for violations.
γ10 is the overall slope for the likelihood of late delivery across all
carriers, γ11 captures how much the slope of likelihood of late
delivery is expected to change for a one-unit change in violations
for carrier j, and u1j is a random effect for the jth carrier that cap-
tures how much the slope for that carrier differs from the overall
slope after accounting for violations.
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APPENDIX

Transportation management systems
Transportation management systems (TMS) are used
by shipping companies and carriers for planning ship-
ments, dispatching vehicles, and measuring perfor-
mance (Caplice, 2007; Rexhausen et al., 2012). They
are the interface between an ERP and warehouse/
distribution module. TMS manage planning (route
planning, load optimization, shipment batching, pro-
vider selection), execution (tracking, monitoring, recep-
tion, documentation), and follow-up (tracing, customs,

invoicing). Figure A1 illustrates the high-level process.
When a shipping company requests a shipment, in con-
junction with GPS tracking, the carrier's TMS flags the
closest available vehicle(s) to that shipment. If that opera-
tor is legally within his or her allowed hours of service
(HOS) driving and the vehicle also has all the necessary
equipment and required permits, then it is routed to the
customer's point of origin to pick up the shipment. If all
nearby vehicles are unavailable, then the customer's order
is periodically re-planned by the TMS until a vehicle
becomes available and is assigned by a dispatcher to pick
up the shipment.

FIGURE A1 Flowchart of a generic

transportation management

system (TMS)
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