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1. Introduction

The economic and financial crisis that began in 2007 demon-
strated significant weaknesses in the resiliency of banks and other
market participants to financial and economic shocks. Losses were
significantly higher with OTC transaction which, being bilaterally
cleared, triggered systemic contagion and spillover risks given a
default of a big player or a small one with a complex network of
counterparties.

In response, the Group of Twenty (G20) initiated a reform pro-
gram in 2009 to reduce the systemic risk from OTC derivatives. In
many jurisdictions important changes in market regulation are in
place, among the most notable are the Dodd-Frank Wall Street
Reform and Consumer Protection Act in the USA and the new Euro-
pean Market Infrastructure Regulation (EMIR). Both initiatives
have imposed that certain OTC transactions must be cleared
through a Central Counterparty (CCP).

In very broad terms, a CCP can reduce systemic risk by interpos-
ing itself as a counterparty to every trade, performing multilateral
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netting, and providing various safeguards and risk management
practices to ensure that the failure of a clearing member to the
CCP does not affect other members. Thereafter, through a process
called “novation”, the CCP becomes the counterparty to all trades
and is responsible for crediting and debiting participants accounts
and monitoring proper levels of margin requirements. Therefore
CCPs are entities whose main function is to novate contracts
between the trading parties, becoming the seller to every buyer,
and buyer to every seller. By doing so, CCPs relieve their clients
of counterparty risk, which they themselves manage by, e.g. calling
margins and collecting default funds to mutualize possible losses.

Unlike banks and other financial institutions, CCPs do not bring
additional market risk to the clearing system once all its exposure
is originally offset. On the other hand, CCPs face counterparty
credit risk under two distinct dimensions. The first relates to the
potential financial loss associated with the default by one or more
of the CCPs participants. Because the CCP is responsible for dis-
charging all the obligations of any defaulting participant it may
have to cover losses that arise during this process. Generally speak-
ing, such losses are associated with the market and liquidity risks
inherent in the settlement of the defaulting participants positions.
The second dimension is the credit risk associated with the
collateral that is part of the CCPs safeguard system. If this collateral
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needs to be used in connection with the failure of its issuer, the
result will be a loss for the CCP, “wrong way risk”. As noted above,
a CCP is exposed to market risk only in the event of default by one
or more participants. The CCP is responsible for unwinding all of a
defaulting participants original obligations and can settle each
obligation on the original due date or, when possible, close out
these positions against other participants under prevailing market
conditions. Therefore the CCP may suffer a financial loss if market
prices and/or rates move in an adverse direction to a position that
is being closed out.

In general, to control its own risk, CCPs have implement mech-
anisms known as safeguards, designed to assure the fulfillment of
their obligations to non-defaulting participants even if one or more
debtors default. Generally speaking, safeguards not only enable the
CCP to discharge its obligations to compliant participants on a
timely basis but also cover any costs associated with the default.

Guidelines for CCP risk management and best practices have
been put forth by the BIS and I0SCO in a series of joint papers
known as the BIS/IOSCO papers where the most notorious article
of this series was the so-called “Principles for Financial Market
Infrastructure”, CPSS-I0SCO (2012). The European Securities Mar-
kets Association (ESMA) also recently issued the EMIR initiative
for Financial Market Infrastructures. Being principles-based, such
regulations leave considerable room for CCPs to propose and
implement risk-management structures that are better suited to
their particular asset-classes and local market characteristics.

While CCPs have been widely employed in exchange-traded
futures and options for decades they had limited applications on
OTC markets prior to the recent financial crisis. However, the
Dodd-Frank and EMIR, and similar measures under consideration
elsewhere, will dramatically expand the volume of cleared transac-
tions. We also observe that, as a consequence, academic literature
on CCPs has proliferated, among them Duffie and Zhu (2011),
Pirrong (2011) and Heller and Vause (2012) are the most notable.

Effective clearing through CCPs mitigates systemic risk by low-
ering the risk that defaults propagate from counterparty to coun-
terparty. However, as pointed out by Pirrong (2011), although
CCPs are intended to reduce systemic risk in the financial system,
it must also be recognized that CCPs can create, or contribute to,
systemic risk. In other words, CCP might be simply another flawed
too-big-fail entity that leads market participants to increase their
exposure under the incorrect assumption that their derivatives
positions have zero counterparty risk. Therefore it is crucial to
understand the various mechanisms by which CCPs affect the
financial system in order to assess their contribution to financial
stability. Furthermore, in an environment where CCPs are playing
a growing role, ensure that margin requirements are enough to
cover the resulting losses from the default of a counterparty should
be the first concern for all market participants.

Historically CCPs have relied on mainstream risk metrics' such
as Value at Risk and stress testing in order to define the adequate
amount of collateral necessary for each participants portfolio (i.e.
margin requirement). While these metrics, borrowed mainly from
the banking and asset management industry, are useful for measur-
ing potential losses for a given portfolio over a fixed time horizon
(mark-to-market risk), it does not handle the dynamic nature of
unwinding a defaulter’s portfolio (default management process). In
this sense the paper of Vicente et al. (2015) that introduced the CORE
approach represents a big step towards the more accurate depiction
the risk management problem faced by a CCP. According to the CORE
approach, margining requirements are determined based on a risk
methodology which estimates potential losses relative to the close-

! The Standard Portfolio Analysis of Risk, or SPAN, developed by the Chicago
Mercantile Exchange in 1988 is the most used system for calculating margin
requirements for futures and options on futures.

out process of a defaulters portfolio in multiple asset-class, multi-
market Central Counterparty.

1.1. Structure and contribution of this paper

The recent papers of Vicente et al. (2015) and Avellaneda and
Cont (2013) introduced the idea of using robust optimization to
formulate the multi-period closeout problem faced by a CCP and
have shown excellent results as a computationally efficient alter-
native to existing methods for margining requirements. However,
neither of these studies addressed the question of how uncertainty
sets should be constructed, as a matter of fact, these papers high-
light the importance of considering a broad set of scenarios for cal-
culating closeout risk figures, including but not limited to “zig-
zag” scenarios. The example presented in Vicente et al. (2015)
illustrates a closeout strategy where, given only two “zig-zag” sce-
narios, the algorithm deliberately postpone the liquidation of the
call option in order to get the most of its value.

This paper intends to shed some light on two key questions that
are fundamental to advancing our knowledge on designing margin
models for CCPs: (1) procyclicality and (2) the tradeoff between
severity and plausibility.

Margin models that prescribe higher margins during periods of
increased price volatility, or as the prices of securities decline,
exacerbate procyclicality. This can be an undesirable property, as
a rise in margin requirements during a period of market stress
could cause market participants to face funding strains. These con-
siderations are supported by empirical and theoretical evidence.
For example, Brunnermeier et al. (2009) model an economy in
which investors face funding liquidity risk due to the possibility
of future margin calls or losses on existing positions.

Kamhi (2009) and more recently Murphy et al. (2014) suggest
that one way to mitigate the procyclicality of margin rules is to
make them less dependent on near-term market conditions. This
involves determining price volatility using long historical data sets,
making sure that past extreme events are captured in the data. If
there are no extreme events in the data, then stress scenarios
can be used to simulate such outcomes. Here we point out that
there exist substantial similarities, although not necessarily
explored, between designing uncertainty sets and the problem of
defining trust region for stress testing.

Studer (1999) was one of the first to develop a systematic, prob-
abilistic approach to stress testing. He considered trust regions for
market risk factors which were connected higher-dimensional sets
with a prescribed probability and introduced the maximum loss
risk measure, defined to be the maximum loss of a market portfolio
over all scenarios in the trust region.

Thus, instead of recurring to the assumption of elliptical distri-
bution for describing uncertainty sets (trust region) as usually
adopted in robust optimization (stress testing) problems, in the
current work we have developed a more realistic multivariate
(empirically motivated) model that captures the three stylized
facts of financial asset returns literature: fat tails, volatility cluster-
ing, and tail dependence. So this paper contributes to this literature
by providing a methodology that allows simulating dynamic stress
scenarios which combined with an optimal closeout strategy pro-
vides margin requirements.

Regulation also has recognized that, subject to being adequately
severe, stress scenarios should not be implausible, CPSS-IOSCO
(2012). Federal Reserve institutionalized the use of supervisory
stress tests for establishing minimum capital standards in 2010
through its now annual Comprehensive Capital Assessment and
Review (CCAR) for all banking organizations with more than $50
billion in total assets, as well as systemically important financial
institutions (SIFI). As pointed out by Christensen et al. (2015)
financial stress tests, including those that have examined the Fed's
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own financial position, usually only consider a small number of
hand-picked scenarios. A benefit of this choice relies on avoiding
the model risk involved in the choice of a risk factor distribution.
However, this advantage comes at a price. Not assuming any risk
factor distribution stress testers cannot judge whether the stress
scenarios are really dangerous or sufficiently plausible.

Therefore, this paper presents a hybrid two-step approach to
construct the uncertainty set (trust region) handling, effectively,
the severity and plausibility concept. During the first step we
define the boundaries of the uncertainty set using Extreme Value
Theory (EVT). The next step involves generating multi-period tra-
jectories via Monte Carlo simulation (MCS) that reproduce stylized
facts present in financial time series. Additionally, in order to avoid
the curse of dimensionality usually present in Monte Carlo prob-
lems we have resorted to a data reduction scheme that relies on
the concept of maximum block-entropy.

This modeling strategy has a number of important benefits both
for robust optimization and stress scenarios exercises. First, by
relying on Monte Carlo simulation it is possible to generate uncer-
tainty sets that are very flexible and are not limited to a specific
parametric formulation, such as ellipsoids. Furthermore, it is also
possible to incorporate almost any model developed by the finan-
cial econometric literature to describe asset prices dynamics. Sec-
ond, the size of the uncertainty set, which represents the desired
level of robustness, can be determined based on a statistical model
designed for handling extreme occurrences. It is worth to mention
one advantage of this method over Breuer et al. (2009) which con-
sists in not imposing any trade-off between plausibility and sever-
ity of scenarios. Third, we keep the robust optimization problem,
even for large-scale problems, solvable with standard optimization
packages.

Finally, the robust optimization formulation presented here
addresses the stress scenario plausibility problem in a much more
general way than Breuer and Csiszar (2013) because the loss func-
tion is solved exactly (i.e. without any approximations) and the
worst-case scenario is obtained simultaneously with the closeout
strategy and consequently can motivate further studies.

This paper contains, besides this introduction, 5 more sections.
Section 2 presents the main elements of CCP risk management and
how the intertemporal closeout problem for the CCP can be written
as a robust optimization problem. Next, in Section 3, we describe,
in comparative terms, how to construct uncertainty sets and how
to generate plausible stress scenarios. Section 4 presents a two-
step methodology that uses Monte Carlo simulation and the con-
cept of block-entropy for generating maximum entropy trajecto-
ries. Practical applications of the proposed hybrid framework are
described in Section 5. Finally, in Section 6 we assess the quality
of our framework for generating stress scenarios when applied to
the problem of determining margin requirements. Appendix A pre-
sents the results of a comparative study between different ways of
handling dependence using Copulae.

2. Foundations for risk management in CCPs
2.1. Motivation

Central clearing alters the allocation of performance risk that is
inherent in derivatives trades. In a traditional OTC transaction, the
original counterparties remain at risk to the failure of each other to
perform on their obligations for the life of the contract. In contrast
to such bilateral trades, CCP becomes the buyer to the original
seller and the seller to the original buyer. If either buyer or seller
defaults, the CCP is committed to pay all that is owed to the non-
defaulting party. To meet its obligations, the CCP has recourse to
a safeguard structure formed by collateral posted by those who

clear through it and financial contributions made by its members
and owners.

Yet as regulators have sought to implement the central clearing
mandate globally, the clearing structure? have only marginally been
considered in the policy debate. Their attention seems to relegate to
second place any discussion on clearing arrangements because a sys-
tem cleared by a CCP can be organized in very different architec-
tures. In the simplest case, all market participants directly connect
to the CCP. In other, by far more frequent, cases the CCP clears for
a restricted number of institutions the General Clearing Members,
or GCMs which in turn clear for other participants, and so on in a
hierarchy of tiers. Galbiati and Soramadki (2012) presents a general
model of clearing, designed to study the mechanics of any clearing
network and offers a numerical application of this model, to study
the statistical properties of exposures under a broad spectrum of
clearing network. Without any lack of generality, this paper is based
on a three-layer structure formed by Clearing Member, Broker and
final beneficiary owner, the latter is the level where margin require-
ments are calculated.

In general, CCPs set collateral requirements with the intent that,
given participant default, the likelihood that this participant will
suffer a loss that exceeds the amount of margin held is very small.
To do this, CCPs typically set initial margin to reflect their estimate
of the riskiness of the underlying transaction. For instance, they
typically charge higher margins on instruments with more volatile
prices, and on less liquid instruments that take a CCP longer to
cover in the event of a default. Crucially, CCPs typically do not
establish initial margin based on the creditworthiness of the party
to a contract.

As mentioned, CCPs, more often than not, determine margin
requirements based on VaR or stress test metrics that measure
potential credit exposure of a given portfolio with just a single
number that represents the potential financial loss in the context
of static portfolios and fixed holding period. The problem with this
approach as it stands is that it does not take into account explicitly
the dynamic nature of unwinding a portfolio. In other words, it
quantifies potential mark-to-market (MTM) losses, but does not
anticipate the cost of unwinding a portfolio. Due to liquidity con-
straints, the latter is expected to be more severe than MTM losses
prior to liquidation. As a way to overcame this limitation Vicente
et al. (2015) present the CORE approach which explicitly recognize
that closeout processes are dynamic, so the portfolio’s risk profile
changes as positions are liquidated and/or settled through time.
According to this view, the management problem of a CCP given
a participant default consists in fulfilling all obligations with min-
imal market impact, so the whole process is undisruptive to other
(non-defaulting) market participants. This process entails having
the adequate resources for closing out the defaulters portfolio at
prevailing market conditions - which can be extremely adverse.
In particular, for either multi-asset or multi-market portfolios the
closeout process has to take into account important practical, real
life constraints (or frictions), such as different settlement cycles,
cash flow mismatches and heterogeneous liquidity profiles.

Thus, from the CCP’s perspective, the question that arises is how
to organize and schedule the liquidation of portfolio to mitigate
risk. Some portfolios have natural offsets between instruments of
different liquidity for instance, interest rate futures and interest
rate swaps may have the same exposure to the term-structure of
interest rates, but very different market liquidity. Just closing-out
all positions in the portfolio as soon as possible may in fact
increase CCP risk, which is not the case when using an orderly
(structured) close-out process. An appropriate choice of the liqui-
dation strategy for a portfolio is crucial. A poor choice may give rise

2 As known as CCP tiering.
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to unwarranted losses over the liquidation period due to market
fluctuations, resulting in high risk estimates; a good choice could
take advantage of risk offsets between instruments that can be lig-
uidated simultaneously, thus minimizing the overall closeout risk.

2.2. The multi-period risk management CCP problem

Typically, a portfolio is defined as a collection of N financial
instruments, represented by the vector 6(0) = [0;(0),...,0n(0)],
where each 6;(0) corresponds to the total absolute quantity of an
instrument i at an initial time t = 0. The uncertainty about futures
states of the world is represented by a probability space (Q, F,P)
and a set of financial risks M defined on this space, where these
risks are interpreted as portfolio or position losses over some fixed
time horizon. Additionally, a risk measure is defined as a mapping
¥ : M — R with the interpretation that (L) gives the amount of
cash that is needed to back a position with loss L.

In its turn, asset values are defined as a function of time and a I-
dimensional random vector of t-measurable risk factors Z;; by
f(t,Ze1,Z;,...Z:;) where f : R, x Rl — R is a measurable function.
For any portfolio comprised of N instruments and initial quantities
0(0) = [0;(0),...,0n5(0)] the realized portfolio variation over the per-
iod [t — 1,¢] is given by:

Ligeq 29

Here f;(t,Z;) describes the exact risk mapping function which is
not only limited to linear functions.

In a typical stress tests exercise we are interested in assessing
what happens to the portfolio losses given an adverse shock on
the risk factors. In other words, it pictures the same portfolio at
two different moments (today and future) and then calculates
the maximum loss over all possible future scenarios Z,n,:

Wit Zo) = fi(t = 1,Zc4)] (1)

sup L (t+m, t (Z) = Zel

Zi meS

Wit +m,Zem) - fi(t,Z:)] (2)

In the CCP context, the equation above implicitly assumes that
all defaulter’s position would have to be unwind at same time
(t + m) and in the same market scenario, Z;,,,. While this assump-
tion is a fair proxy for the potential losses relative to the unwinding
process of a defaulter’s portfolio comprising just one asset class,
e.g. equities or futures, this is not necessarily true for highly
heterogeneous portfolio (e.g. listed and OTC derivatives), as
pointed by Vicente et al. (2015).

Therefore a more realistic formulation arises when the closeout
strategy (0(t)), is explicitly incorporated into the loss function. In
this context, a closeout strategy (6(t)), ., is understood as a rule for
liquidating all portfolio positions given some finite time horizon. A
closeout strategy can be as simple as liquidating all positions as
soon as possible, or it may have a more sophisticated structure
where a set of rules and/or restrictions have to be followed. There-
fore, the resulting loss function after including the closeout strat-
egy is given by:

t+7 N

= 2200

Here ¢ takes value equal to 1 for positions subjected to peri-
odical marking to market, such as futures and futures-style
options, and zero otherwise. Additionally, T represents the liqui-
dation horizon, meaning that all positions must be liquidated
until ¢+ 7.

Once characterized the loss function for a CCP it is possible to
state mathematically its problem of finding the optimal closeout
strategy, 07 (t), as

Lt (Ze, 0 Wit +1,Zeq) — of (8, Zy)] 3)

t+1 N

=220

where the set A describes all conditions imposed to a feasible
solution.

In reality, of course, future price paths are not known at time t
and uncertainty should be incorporated into this problem. Further-
more, depending on how uncertainty is introduced, which is post-
pone to the next section, into this problem there exist different
techniques for finding the optimal solution, e.g, dynamic program-
ing or robust optimization.

Finally, once the optimal closeout strategy has been deter-
mined, the CCP will require L(Z.,0* (1)) as collateral in the form
of cash or high liquid securities to support the losses incurred
during the unwinding of a defaulter portfolio.

SUDLM (Z,0( (OUfi(t+1,Ze1) — ¢fi(t, Zo)] (4)

2.3. Solving the multi-period risk management CCP problem

The optimization problem posed above resemble the one found
in studies of long-term investment planning in the context of a
utility function based on consumption, and placed the problem
in the realm of dynamic programming. However, closed-form solu-
tions of this kind can be derived only under strong assumptions on
the investors behavior and the structure of the asset price process,
and cannot be easily generalized when market frictions, e.g., trans-
action costs, are included.

Bertsimas and Pachamanova (2008) have pointed out that
recent advances in computer technology have reduced the signifi-
cance of the ability to solve the multi-period portfolio problem in
closed form, and have made discrete time portfolio optimization
models more tractable. Additionally, a significant amount of
research has been performed in the field of stochastic program-
ming applied to portfolio optimization, for instance Steinbach
(2001). The main idea of the stochastic programming approach is
to represent future realizations of returns by a scenario tree, and
find portfolio weights at each point in time that maximize the
expected value of the returns over the whole time horizon minus
some measure of risk. Although this analysis is very flexible from
a modeling standpoint, its computational complexity increases
exponentially with the number of time periods.

As originally posed, the solution of (4) requires some form of
intertemporal optimization technique, for instance, dynamic pro-
graming. In its turn, dynamic programing characterization of
uncertainty relies on the average or expected performance of the
system in the presence of uncertain effects. Although expected-
value optimization is often the most adequate approach for many
applications in finance, risk management emphasis on worst case
scenarios and tail events requires a different set of tools. Indeed,
in the CCP context it is important to notice that the closeout strat-
egy must be robust enough to minimize the losses considering all
possible states and, more importantly, in adverse extreme situa-
tions such as the one represented by stress scenarios.

Robust optimization has emerged as a leading methodology for
addressing uncertainty in optimization problems. While stochastic
optimization’s pursuit is to immunize the solution in some proba-
bilistic sense, robust optimization constructs a solution that is
optimal for any realization of uncertainty in a given set called
uncertainty set, S. Typically, the original uncertain optimization
problem is converted into a equivalent deterministic form by
duality arguments and then solved using standard optimization
algorithms. Ben-Tal et al. (2000) were the first to suggest using
robust optimization to deal with the curse of dimensionality in
multi-period portfolio optimization problems. As pointed by
Bertsimas and Pachamanova (2008), the formulation by Ben-Tal
et al. (2000) can be viewed as an extension of the Certainty
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Equivalent Controller (CEC) procedure from dynamic programming.
The CEC represents a deterministic approach to uncertainty at each
stage, it applies the policy that is optimal when all uncertain quanti-
ties are fixed at their expected values. An important disadvantage of
the CEC approach is that risk is not factored in Ben-Tal et al. (2000)
incorporate risk by allowing future asset returns to vary in ellipsoidal
sets whose size is determined by the user and depends on his aver-
sion to uncertainty. The robust counterpart of the multi-period port-
folio optimization problem can then be formulated as a second order
cone problem (SOCP). Although this method appears simplified, the
computational results obtained by the authors indicate that this
robust optimization formulation for ellipsoidal uncertainty sets out-
performs stochastic programming algorithms both in terms of effi-
ciency and in terms of optimal strategy selection.

Fortunately, the objective function (4) has important mathe-
matical properties that allow the problem to be tackled with
robust optimization methods. Avellaneda and Cont (2013) have
shown that the objective function is convex; furthermore they
show that the original problem can be written, by means of duality
arguments, as a robust optimization problem. Hence, determining
the optimal liquidation strategy consists in maximizing a convex
function under the linear equality/inequality constraints. There-
fore, the CCP problem that corresponds to the robust policy is given
by the solution of the minimax problem:
sup infL(Z;,0(t)) (5)

0(t)eA Ze€S

where the set A describes all conditions imposed to a feasible solu-
tion, such as zero inventory in t+ 7, monotonically decreasing
inventory and the maximum number of contracts liquidated per
day. Further details can be found in Vicente et al. (2015) and
Avellaneda and Cont (2013).

Here the worst-case scenario is computed simultaneously with
the minimization over 6(t). If the closeout strategy is efficient in this
scenario, then the results associated with less severe scenarios must
result in smaller losses. In a similar way Polak et al. (2010) have
shown that, the worst-case optimization has provided better results
than other techniques for portfolio optimization and risk mitigation
such as expected value maximization or variance minimization.

After we have stated how the risk management problem faced
by the CCP can be solved it is possible to move forward to define
the uncertainty set S.

3. Uncertainty sets and plausibility

In robust optimization, the description of the uncertainty of the
parameters is formalized via uncertainty sets which can represent
or may be formed by differences of opinions on future values of
certain parameters. Bertsimas et al. (2013) have pointed out that
the computational experience has suggested that with well-
chosen uncertainty sets, robust models yields tractable optimiza-
tion problems whose solutions performs as well or better than
other approaches. On the other hand, with poorly chosen uncer-
tainty sets, robust models may be overly-conservative or even
computationally intractable.

At this point the definition of uncertainty sets resembles the
definition of plausible stress scenarios present on systematic stress
tests literature. Then, ignoring for a moment the concept of close-
out strategy, the stress test of a particular portfolio is carried out by
computing:
sup L(Z:m,) (6)
ZieS

When comparing (6) with (5) we realize that the role played by
S in both problems is vital. For instance, stress scenarios (Z € S)
which are not too severe will, according to (6), result in reduced

losses and therefore are not so informative for risk management
policy purposes, such as motivating the adoption of risk-reducing
strategies. Likewise, an uncertainty set that is too narrow could
not represent all uncertainty present in the robust optimization
problem. On the other hand, stress scenarios (Z € §) which pro-
duce high values for (6) are also liable to some level of questioning
because if the value of Z is unrealistic this could undermine the
credibility of stress test results.

Therefore the quality of this kind of problem depends crucially
on the definition of S. In stress testing the bias toward historical
experience can lead to the risk of ignoring plausible but harmful
scenarios which have not yet happened in history.

As a way to ensure that the quality of stress testing depends less
on individual skills and more on models/methods, the Basel
Committee on Banking Supervision (2005) issued a recommenda-
tion to construct stress scenarios observing two main dimensions:
plausibility and severity. Severity tends to be the easiest compo-
nent to take into account, because risk managers can ultimately
look at historical data and define scenarios based on the largest
movement observed for each risk factor. On the other hand, plau-
sibility requires that after setting individual stress scenarios S;
and S; for risk factors i and j the resulting joint scenario (S;,S;)
makes economic sense.

The current literature in stress test has provided different
approaches for generating plausible stress scenarios. A first
attempt in this direction was made by Studer (1999) and Breuer
and Krenn (1999), who developed what is called “traditional sys-
tematic stress tests”. In particular, Studer considered elliptical
multivariate risk factor distributions and proposed to quantify
the plausibility of a realization by its Mahalanobis distance:

sup  L(Z) 7
Z:Maha(Z)<k

This approach was extended by Breuer et al. (2012) to a
dynamic context where multi-period plausible stress scenarios
can be generated. While this approach introduced the systematic
treatment of plausibility for generating stress scenarios it has
problems of its own. First, the maximum loss over a Mahalanobis
ellipsoid depends on the choice of coordinates. Second, the
Mahalanobis distance as a plausibility measure reflects only the
first two moments of the risk factor distribution. It is important
to notice that the argument for working with elliptical approxima-
tions to the risk factor is the relative tractability of the elliptical
case. However, this ability to handle the problem has a cost of
ignoring the fact that an given extreme scenario should be more
plausible if the risk factor distribution has fatter tails.

Recently, Breuer and Csiszar (2013) proposed a new method to
overcomes the shortcomings of Studer‘s method. The authors
introduce a systematic stress testing for general distributions
where the plausibility of a mix scenario is determined by its rela-
tive entropy D(Q||v) with respect to some reference distribution v,
which could be interpreted as a prior distribution. A second inno-
vation of their approach was the usage of mixed scenarios instead
pure scenarios. Putting all elements together Breuer and Csiszar
(2013) propose the following problem:

sup [Eq(L) := MaxLoss(L, k) (8)
Q:D(Q|v)<k

This method represents an important contribution to the litera-
ture as it moves the analysis of plausible scenarios beyond ellipti-
cal distributions. The authors show that under some regularity
conditions the solution to (8) is obtained by means of the Maxi-
mum Loss Theorem and some concrete results are presented for
linear and quadratic approximations to the loss function. Even
though the solution of (8) can be shown theoretically to exist
and to be unique by the Maximum Loss Theorem it is not that



124 A. De Genaro/Journal of Banking & Finance 67 (2016) 119-134

simple in practice for complex portfolios, in particular with non-
linearities in the loss function, since it involves the evaluation of
a integral over the possibly high-dimensional sample space.

In terms of how to construct uncertainty sets, much of the
Robust Optimization literature assumes an underlying parametric
structure a priori for describing disturbances. For instance, Ben-
Tal et al. (2000) suggest an ellipsoidal uncertainty sets for describ-
ing the uncertainty set:

S={Z:|IZ*Z~Z)ll, <p, Vte[l,Tnal} 9)

where X represents the covariance matrix among risk factors and Z;
is a vector comprised of the mean values for each risk factor. The
parameter p, as know as robustness budget, is a subjetive value
chosen by the decision maker to reflect his attitude towards risk;
the larger is p, the more risk averse he is. Therefore risk is incorpo-
rated by allowing future asset returns to vary in ellipsoidal sets
whose size p is determined by the user and depends on his aversion
to uncertainty.

A more general approach was developed by Bertsimas et al.
(2004) where uncertainty on future returns is described by polyhe-
dral rather than ellipsoidal uncertainty sets. They studied the
robust counterparts of linear optimization problems when the total
distance (according to a pre-specified norm) between the realized
uncertain coefficients and their nominal values is restricted
to be less than a robustness budget p. Based on this structure, a
flexible construction for the uncertainty set has been proposed
in the multi-period asset allocation context by Bertsimas and
Pachamanova (2008). The authors propose to describe the uncer-
tainty by means of polyhedral sets, which in its simplest form,
assumes that i-th asset returns vary in intervals, such as:
S={Z:: S(t)f <Z(t), <S(); Yte[,Towl, i=1,...,1} (10)

1 1

where Ty is the maximum holding period and I is the number of
risk factors.

The length of these intervals can be determined, for example, as
a percentage of their standard deviations or by means of bootstrap-
ping as pioneered by Tiitiincii and Koeing (2004). The solution pro-
duced with this assumption can be viewed as a worst-case nominal
policy in the sense that the program will protect against uncer-
tainty by setting all returns to their lowest possible values the
end points of the intervals. However, this approach may be overly
conservative or implausible. In practice, there is usually some form
of correlation amongst future returns, and it rarely happens that all
uncertain returns take their worst-case values simultaneously. It
may therefore be desirable to incorporate some kind of variability
and correlation of asset returns. So the uncertainty set takes the
form:

S=1{Z:: %2~ L)y < P V€, Tha} (11)

As in (9) X, represents the covariance matrix among risk factors
and Z, is a vector comprised of the mean values for each risk factor.
However, the Bertsimas and Pachamanova (2008) approach given
by (11) generalizes (9) in two directions. First, by defining a norm
called the d-norm that includes the polyhedral norms L, and the L.,
as special cases, and they demonstrate that for d = \/n, where n is
the dimension of the vector of uncertain returns, the d-norm
approaches the L, norm. Thus, if we use the L, norm we obtain
Ben-Tal et al. (2000) formulation. Second, by making time-
varying the robustness budget parameter p, and the covariance
matriz %,.

It is worth to mention that embedded in all uncertainty sets S
presented above is the assumption that uncertainty is modeled
by a continuous variable, so in this cases the corresponding robust
optimization problem is called continuous minimax problem. On
the other hand, if the uncertainty set S is a finite set, e.g.

S={Z1,Z,,...,Zx}, the corresponding optimization problem is
called discrete minimax and no reformulation is necessary to pre-
serve the structural properties (linearity, convexity, etc.) of the
original optimization problem. Consequently, when the uncer-
tainty set is a finite set the resulting robust optimization problem
is larger but theoretically no more difficult than the non-robust
version of the problem.

Finally, we finalize this section by noting that the definition of
the set S is equally important for robust optimization and system-
atic stress testing, which, despite its terminology, depend on the
definition of S to obtain their results. As already mentioned a
poorly chosen uncertainty sets, can produce results which are
overly-conservative (implausible) or even computationally
intractable.

4. A hybrid framework for generating S

A key element either in robust optimization problem or stress
testing is to define an uncertainty set of possible realizations of
the uncertain parameters and then optimize against worst-case
realizations within this set. Fortunately, as pointed by Bertsimas
et al. (2013), there are several theoretically motivated and experi-
mentally validated proposals for constructing good uncertainty
sets in robust optimization problems. According to the authors,
most of these proposals share a common paradigm: they combine
a priori reasoning with mild assumptions on the uncertainty to
motivate the construction of the set.

Traditional approaches, such as Bertsimas and Sim (2004) and
Chen et al. (2010), typically assume that Z is a random variable
whose distribution P is not known exactly. In general, these
approaches make only mild a priori assumptions about certain
structural features of P. For example, they may assume that P
has an elliptical distribution. These approaches then look for a
set S that would satisfy two key properties: (i) being computation-
ally tractable (ii) involving either deterministic or probabilistic
guarantees of constraints against violation, e.g Z'x <bVZ e S.
We can observe that while elliptical distributions have been an
usual assumption for describing uncertainty on robust optimiza-
tion problems empirical research in financial time-series indicates
the presence of a number of facts which are not properly captured
by this class of distributions. Concretely, empirical literature indi-
cates that asset returns display a number of so-called stylized
facts: fat tails, volatility clustering and tail dependence.

In the current work we propose a framework for designing
uncertainty sets which is flexible enough to capture all the three
stylized facts present in financial asset returns: fat tails, volatility
clustering, and tail dependence. In our approach, rather than
imposing several assumptions about certain structural features of
P, we generate several scenarios for the uncertain variables Z
based on Monte Carlo simulation and then optimize against the
elements within this set. So this sampling procedure allows to
incorporate with a relative low cost different state-of-art statistical
models for describing the uncertainty on S and produces a robust
optimization formulation with a finite uncertainty set:

S=AZ1(®),Zy;(®), ..., Iy (@)} Vte[1,Tma (12)

where Z; represents a realization (w) for the source of uncertainty
under consideration.

Therefore, we propose a hybrid two-step approach to define
discrete scenarios in S. Thus, as a first step we define envelope sce-

narios, S.,,,, for each risk factor in M using Extreme Value Theory
(EVT). Technically, EVT is a limit law for extremes just like the cen-
tral limit theory is a limit law for the mean. Using these laws, it is
possible to find limiting distributions to model only the tails of the

sample instead of imposing a distribution to the entire sample.
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Also, since EVT methods are implemented separately to the two
tails, the skewness is implicitly accounted for Embrechts et al.
(2001), McNeil and Frey (2000), among others, showed that EVT
methods fit the tails of heavy-tailed financial time series better
than more conventional distributional approaches. Note that by
recognizing that worst-case scenarios are indeed associated with
extraordinary events it is very straightforward to employ elements
from EVT literature to provide the ground for constructing S.
Basically, envelope scenarios would represent the worst-case
scenario (WCS) for each risk factor and have the highest level of
severity embedded:
Senw = [S(E)1,S(0),,

. Vte[l,Tpel and i=1,...1 (13)

where Ty is the maximum holding period and I is the number of
risk factors.

In this context it is assumed that tails of asset returns have a
cumulative Generalized Pareto Distribution given by:

1
Fen@®@ =1- (1+5) (14
The supportisz > 0for ¢ > 0and 0 <z < —-1/¢ for € < 0.

This particular distributional choice is motivated by a limit
result in EVT which establish convergence results for a broad class
of distribution functions G and its distribution function of the
excesses over certain (high) threshold k denoted by G (x). The Pick
ands-Balkema-de Haan theorem states that as the threshold k
becomes large, the distribution of the excesses over the threshold
tends to the Generalised Pareto distribution, provided the underly-
ing distribution G satisfies some regularity conditions. In the class
of distributions for which this result holds are essentially all the
common continuous distributions of statistics, and these may be
further subdivided into three groups according to the value of
the parameter ¢ in the limiting GPD approximation to the excess
distribution>.

Once the parameters of the GPD have been estimated the upper
and lower bounds of (13) can be obtained using the percentile of
(14):

S(t)j=inf{x € R:Fq) (%)
S(t), =inf{x € R:Fc)(x)

oy}, Vte[l,Tme] and i=1,....1 (15)
oy}, Vte[1,Tme] and i=1,...;1 (16)

YR\

A compelling argument for this approach is the capacity of
defining the size of the uncertainty set based on probabilistic terms
instead of risk aversion parameters which can be either hard to
estimate or that are attached to a specific family of utility func-
tions. Thus, as it is standard in the risk management literature,
for daily data, and assuming a confidence level of 99.96%, it is
expected that actual variation would exceed S(t), one out of
10 years.

Note that the envelopes proposed above are similar to polyhe-
dral uncertainty set proposed by Bertsimas and Pachamanova
(2008), but now they are determined using a recognized statistical
technique for dealing with extremes. While these envelopes can be
viewed as a worst-case scenario so it will protect against uncer-
tainty by setting all returns to their lowest (highest) possible val-
ues the end points of the intervals, this approach can produce
implausible scenarios. In practice, there is usually some form of
dependence among future returns, and it rarely happens that all
uncertain returns take their worst-case values simultaneously. It

3 The case ¢ > 0 corresponds to the heavy-tailed distributions whose tails decay
like power functions such as the Pareto, Student’s t, Cauchy, Burr, loggamma and
Frechet distributions. The case ¢ = 0 corresponds to distributions like the normal,
exponential, gamma and lognormal, whose tails decay exponentially; we call such
distributions thin-tailed. The final group of distributions are short-tailed distributions
¢ < 0 with a finite right endpoint like the uniform and beta distributions.

may therefore be desirable to incorporate some kind of variability
and correlation of asset returns. A second limitation with polyhe-
dral uncertainty set comes from the fact that for some no-linear
instruments, such as options, the maximum loss may not occurs
when the underlying asset hits its envelope scenario. For instance,
a stress scenario for a portfolio with an ATM long straddle position
is a scenario where the underlying remains unchanged. However
for an outright position this scenario generates almost no losses.
The literature calls this the dimensional dependence of maximum
loss and suggests that effective stress scenarios are not only made
up of those exhibiting extreme variation.

Therefore a second step is taken in order to overcome these two
limitations. So, let I'(a, ®) denotes a particular dynamic data gen-
erating process (DGP) which depends on a parameter vector a
and an arbitrary distribution ®. The second step consists in gener-
ating trajectories for each risk factor along the holding period
which are expected to fill as uniformly as possible the state space
comprised by the upper, S(t),, and lower bounds, 5(t);:

S = {S(t) : S(t)} < S(t) < S(b)!

w Vte[l,Tme] and i=1,....1}

(17)

where Ty is the maximum holding period and I is the number of
risk factors.

Note that given a particular realization w there is no sufficient
condition imposed to assure that S(t,w) € S. Therefore an addi-
tional structure is required to meet this condition. One way of
assuring that S(t, ) € S is by recurring to the concept of exit time:

T(w) :=inf{t > O[S(t,w) ¢ S} (18)

Therefore, it is possible for every trajectory generated by Monte
Carlo to construct the simulated stopped process as:

C _ S((,O, t)7
0= {5as,

if T>t

19
if T<t (19)

In this situation the use of stopped process is an artifice that
assures for any  the simulated stopped process is by construction
contained in S.

It is worth to mention that the dependence structure among
risk factors will be part of the DGP specification. So the plausibility
among risk factors will be embedded into the dependence struc-
ture established, in other words, by assuming a dependence struc-
ture where tail dependence is present it is expected that simulated
trajectories will exhibit average dependence as well as extreme co-
movements. To illustrate how the simulated stopped process
behaves we present two pictures: as one can see in Fig. 1 there
are three simulated paths which are not necessarily contained in
S while one can be seen in Fig. 2 how the simulated stopped pro-
cess would look like.

It’s worth mentioning that modifying the properties of a set of
simulated trajectory is a method which has already been adopted
in other studies. Avellaneda et al. (2001) in the context of option
pricing proposed an algorithm for correcting price-
misspecification and finite sample effects arising during the Monte
Carlo simulation by assigning probability weights to the simulated
paths. Differently from Avellaneda et al. (2001) who changed the
simulated price distribution, our approach need to assure
S(t,w) € S pathwise rather than in distribution.

Finally, even though the definition of the worst-case scenarios is
based on GPD other fat tail technique could be selected, such as
asymmetric t-distribution proposed by Hansen (1994). On the
other hand, if the statistical method seems too rigid for describing
the worst-case scenario and some degree of subjectiveness is
required, there is no limitation in replacing these statistical meth-
ods by hand-picked scenarios if necessary. The usage of hand-
picked stress scenarios, although questionable among academics,
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Fig. 1. Sample trajectories drawn using Monte Carlo, S(w,t). Red lines are the
envelope scenarios. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 2. Sample trajectories drawn using simulated stopped process, S(w,t). Red
lines are the envelope scenarios. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

is commonly implemented by practitioner because it produces
outcomes which are intuitive and easy to interpret®. In 2005 the
Committee on the Global Financial System (2005) set up a group
to review what banks and securities firms perceived to be material
risks for them at that time, based on the stress tests they were run-
ning. They point out that hand-picked scenarios are potentially more
relevant to determining the risk profile of the firm, but they are
labor-intensive and involve considerably more judgment. With this
in mind, some firms invite senior managers, front desks and econo-
mists to these discussions in order to secure objectivity and support
for the scenario-setting process. Due to its underlying properties and

4 Senior management tends to prefer simple and intuitive models rather black-box
tools, particularly after the credit crunch where decisions were made based on
models, which later were proved as very imprecise.

historical usage it is reasonable to expect that this method will con-
tinue to be used, but from now on combined with quantitative tools
of a probabilistic nature.

4.1. The curse of dimensionality and maximum entropy trajectories

A typical Monte Carlo experiment for risk measurement usually
involves thousands of samples, which, combined with a 10 days
horizon can yield millions of scenarios for just one portfolio. On
the other hand, as pointed by Avellaneda and Cont (2013), the opti-
mal closeout strategy for unwinding a portfolio can be solved using
Linear Programing (LP) techniques and the problem’s dimensional-
ity grows as O(N x Tpq), Where N is the number of scenarios and
Tmax denotes the maximum horizon for unwind a given portfolio.
As one can easily observe, the computational power required to
solve the problem increases as the number of scenarios grow,
and therefore the number of scenarios should be carefully defined
to maintain the optimization problem tractable.

Our approach for maintaining the problem of finding the solu-
tion of the closeout strategy tractable consists in choosing a subset
of paths from the original Monte Carlo experiment which present
the highest variation (or volatility) along the holding period. There-
fore, our approach consists in properly choosing a second plausible
set S*,S8* ¢ S, formed by those trajectories with highest entropy.
The entropy quantifies the average uncertainty, disorder or irregu-
larity generated by a process or system per time unit and, it is the
primary subject of fundamental results in information and coding
theory (Shannon’s noiseless coding theorem) and statistical
mechanics (second law of thermodynamics). It is not surprising,
therefore, that this notion, appropriately generalized and trans-
formed, is ubiquitous in many fields of mathematics and science
when randomness or random-like behavior is at the heart of the
theory or model being studied. The application of entropy in
finance can be regarded as the extension of the information
entropy and the probability entropy. It can be an important tool
in portfolio selection and asset pricing. Philippatos and Wilson
(1972) were the first two researchers who applied the concept of
entropy to portfolio selection while Zhou et al. (2013) review the
concepts and principles of entropy and provide an updated list of
papers that have applied entropy in finance over the last 30 years.

With respect to estimating the entropy £(t) of a given time ser-
ies, a good starting point might be the Shannon n-gram (block)
entropy suggested in Ou (2005) and Philippatos and Wilson
(1972). In a very general case, a given sequence of N observations
X1,X2,...,Xy is first partitioned into subvectors of length L with an
overlap of one time step, which are further divided into subtrajec-
tories (delay vectors) of length n < L. Real-valued observations
X; € R are discretised by mapping them onto A non-overlapping
intervals A”(x;). The precise choice of those intervals (also called
states) denoted by A* would depend on the range of values taken
by x;. Hence a certain subtrajectory X;,xz,...,X, of length n can
be represented by a sequence of states A%, A,, ..., A.. The authors

then define the n-gram entropy (entropy per block of length n)
to be:

En == p(Ai.A},.... A, )log,p (A}, 4, A}) 20
X

In the above equation the summation is done over all possible
state sequences y € A},Aj, ..., A.. The probabilities p(A], A}, ..., A%)
are calculated based on all subtrajectories x;,x,,...,Xx, contained
within a given subvector of length L. In general, processes or
variables with entropy equal to 0 are deterministic, in our context,
trajectories with block-entropy close to zero should present low
price variation.
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In the same way as in the historical VaR approach, where
returns are sorted in ascending order and the VaR number at a k
per cent level of confidence is determined as the (100 — k) per-
centile of these sorted returns, trajectories will be chosen based
on its sorted entropy. That is, entropies, along with their assigned
trajectory, are sorted in ascending order: & (Z;) <...< &n(Z))
where m is used to denote an ordering based on each entropy tra-
jectory and &;(Z;) denotes the n-gram entropy for the j — th trajec-
tory Z; calculated as defined by (20). Therefore, we sort the
simulated stopped trajectories based on their entropy, starting
from the smallest value (probably close to zero) to the highest
entropies.

Therefore after raking every simulated trajectory based on its
block entropy our strategy consists in choosing the k — th largest
values for every risk factor to form the final stress scenarios, S*.
For those risk factors which are jointly modeled we repeat this cal-
culation for every factor in the group choosing those realization w;
for each factor I. The final set will be formed by the union of all
realizations of every factor. So, if we have two risk factors and
we choose only the two largest values for each factor, we will
end up with 4 scenarios for each risk factors, in other words, if real-
ization w; is the largest for factor one and ws is the largest for fac-
tor two we keep both realization in our final set of stress scenarios
{w1, w3} for each factor. In this way it is possible to preserve the
dependence structure presented in the data.

To illustrate this concept, the pictures below present two sets of
simulated trajectories grouped according to their block-entropy
over a 10-days horizon:

As one can see in Fig. 3, 1000 trajectories were simulated and
later classified as low entropy according to the block-entropy esti-
mator. It can be observed that the vast majority of the trajectories
are contained in the [-0.05, 0.05] interval, with just a few excep-
tions hitting the envelope scenarios. This lack of coverage means
that a number of price paths will not be taken into consideration
for determining the optimal closeout strategy, which might lead
to risk underestimation. On the other hand, as can be seen in
Fig. 4, 1000 simulated trajectories were drawn and ranked as high
entropy. In this second set one can observe, as expected, that tra-
jectories with highest entropy indeed presented wider variations.
Additionally, these trajectories performed better in making the
coverage of state space formed by the envelopes scenarios more
uniform.

5. Application: generating scenarios for S

Once the framework for generating S* has been presented in
the previous section, a more detailed walk through description is
provided here for methodological reasons. The first step involves
defining the envelope scenarios:

S(t)j=inf{xe R:Feop(x) = 04}, VEE[1,Tmal, i=1,....,1 (21)
S(t), =inf{x € R:Fieou(X) = 0}, Vte[1,Tmal, i=1,....1 (22)

Here F . (x) is the Generalized Pareto Distribution:

1
Fieoyx)=1— (1 + %X) (23)
where the last function argument denotes that this function is inde-
pendently defined to each tail. The support is z > 0 for ¢ > 0 and
0<zg —1/¢foré<O.

Once the parameters of the GPD have been estimated, the upper
and lower bounds of (13) are obtained using the percentiles of (23)
for the level of severity of o, = 0.0004 and o, = 0.9996.

Next we proceed by specifying the DGP, I'(o, @) that will be
used for generating paths of the simulated stopped process, S(w, t):
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Fig. 3. Low entropy trajectories.
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Fig. 4. High entropy trajectories.

S={S(w,t):S(t)i <S(w,t) <S(t),, Yte[1,Tmal, i=1,....I} (24)

In order to model dynamic volatility and fat tails together, the
method implemented for generating asset returns follows a gener-
alization of the two-step procedure of McNeil and Frey (2000)
where assets volatility are modeled by GARCH-type models and
tails distributions of GARCH innovations are modeled by EVT.

Therefore, following the same spirit of the model employed by
McNeil and Frey (2000), assume that the Data Generating Process
describing asset returns is given by:

e =+ preq + 016 (25)

where {¢} is a sequence of independent Student’s t distribution
with v degrees of freedom to incorporate fat tails often presented
in asset returns.

Furthermore, assume that:

q p

0? =0 + Z%‘E?ﬂ- + Zﬁjo-?,j (26)
j=1 j=1

Eqgs. (25) and (26) define the standard AR-GARCH(p,q) model of

Bollerslev (1987). Parameter restrictions are required to ensure
positiveness of the conditional variance o, in (26). Assuming
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o >0,j=1,...,q,and §; = 0,j=1,...,pis sufficient for this. Both
necessary and sufficient conditions were derived by Nelson and
Cao (1992). A more sophisticated formulation where p > 1 and
q > 1 or asymmetric models such as Glosten et al. (1993) or tem-
pered stable GARCH models as Menn and Rashev (2005) could also
be adopted here. In this paper we shall concentrate on (26) assum-
ing p = q = 1. This is done for two reasons. First, the GARCH(1,1)
model is by far the most frequently applied GARCH specification.
Second, we want to keep a more parsimonious specification once
we are handling a large scale problem.

The second step according to McNeil and Frey (2000) requires
modeling the marginal distributions for standardized innovations
z.:=r1¢/0r of each risk factor. To accomplish that, a non-
parametric smooth kernel density estimator is implemented for
describing the center of the data while the Generalized Pareto
Distribution for the upper and lower tails above the threshold is
adopted.

To incorporate the dependence structure among different risk
factors we adopted the “t-copula” which has received much atten-
tion in the context of modeling multivariate financial return data. A
number of papers such as Mashal and Zeevi (2002) and Breymann
et al. (2003) have shown that the empirical fit of the t copula is
generally superior to that of the so-called Gaussian copula. One
reason for this is the ability of the t copula to better capture the
phenomenon of dependent extreme values, which is often
observed in financial return data.

A d-dimensional copula is a d-dimensional distribution function

on [0, 1] with standard uniform marginal distributions. Sklars The-
orem (see for example Nelsen (1999), Theorem 2.10.9) states that
every density function F with margins Fy,...,F4 can be written as

F(X1,...,X%3) = C(F1(x1),...,Fa(Xa)) (27)

for a t-copula, which is uniquely determined on [0,1]" for distribu-
tions F with absolutely continuous margins. Conversely any copula
C may be used to join any collection of univariate dfs Fy, ..., F4 using
(27) to create a multivariate df F with margins F,...,F.

The t copula is defined as:

vid

> " dx (28)

xPx
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where t;! denote the quantile function of a standard univariate t,
distribution and P is the correlation matrix implied by the disper-
sion matrix X.

The t copula has a number of desirables features, such as tail
dependence different from zero. The coefficients of tail dependence
provide asymptotic measures of the dependence in the tails of the
bivariate distribution of (X;,X;). The coefficient of upper tail
dependence of X; and X; is

Limp(X; > B @K > Fi(q) = 2 (29)

provided a limit 2 € [0, 1] exists. Mutatis Mutantis the lower tail
dependence can also be obtained. For the copula of an elliptically
symmetric distribution like the t the two measures /, and /4 coin-
cide, and a simple formula was found by Embrechts et al. (2001).
Additionally, Embrechts et al. (2001) found that for continuously
distributed random variables with the t-copula the coefficient of tail
dependence is given by:

J=2t (—\/v+1\/1 “p/ V1 +p> (30)

where p is the off-diagonal element of P.
Although it is quite common to use the word correlation when
referring to relations between different risk factors, there are other

forms of dependence that are not strictly speaking linear in nature.
Hence they are not measured properly using a correlation statistic,
which pertains strictly to the realm of linear relations. From Eq.
(30) we can see that even if correlation between any two risk factor
is null there still exist a positive probability of extreme joint move-
ment. This is a desirable feature in risk management because under
extreme market conditions the co-movements of asset returns do
not typically preserve the linear relationship observed under ordi-
nary conditions.

5.1. Results

In this subsection we have summarized some aspects of statis-
tical inference, as well as, the outcomes for the models that we
have proposed and estimated. Our dataset contains daily closing
spot prices of the two most important Brazilian stock indexes, Ibo-
vespa and IBrX-50 (indexes compiled by BM&FBOVESPA made up
of securities that are the most actively traded and liquid in Brazil)
and the S&P 500 over the period from January 2, 2002 to October
10, 2014. Although the dimension of the problem is small, the
example illustrates the qualitative properties of the proposed
methods.

The first step requires estimating the parameters for the AR-
GARCH processes as defined by Eqs. (25) and (26). In general
non-Gaussian GARCH models parameters are estimated by quasi-
maximum likelihood (QMLE). Bollerslev and Wooldridge (1992)
showed that the QMLE still delivers consistent and asymptotically
normal parameter estimates even if the true distribution is non-
normal. In our approach the efficiency of the filtering process,
i.e., the construction of z, is of paramount importance. This is so
because the filtered residuals serve as an input to both the EVT tail
estimation and the copula estimation. This suggests that we should
search for an estimator which is efficient under conditions of non-
normality. Therefore, as pioneered by Bollerslev (1987) and
adopted here, model’s parameters can be estimated by maximizing
the exact conditional t-distributed density with v degrees of free-
dom rather than an approximate density.

Having completed the calibration of GARCH parameters and
hence obtained sequences of filtered residuals we now consider
estimation of the tail behavior by using a Pareto distribution for
the tails and the Gaussian kernel for the interior of the distribution.
A crucial issue for applying EVT is the estimation of the beginning
of the tail. Unfortunately, the theory does not say where the tail
should begin. We know that we must be sufficiently far out in
the tail for the limiting argument to hold, but we also need enough
observations to reliably estimate the parameters of the GPD. There
is no correct choice of the threshold level. While McNeil and Frey
(2000) use the “mean-excess-plot” as a tool for choosing the opti-
mal threshold level, some authors, such as Mendes (2005), use an
arbitrary threshold level of 90% confidence level (i.e. the largest
10% of the positive and negative returns are considered as the
extreme observations). In this paper we define upper and lower
thresholds such that 10% of the residuals are reserved for each tail.

Estimating the parameters of a copula or the spectral measure is
an important part of our framework. The literature on this topic
provides two ways of estimating t-copula parameters: a fully para-
metric method or a semi-parametric method. The first method,
that has been termed as the inference functions for margins
(IFM) method Joe (1996), relies on the assumption of parametric
univariate marginal distributions. The parameters of the margins
are first estimated, and then each parametric margin is plugged
into the copula likelihood, and this full likelihood is maximized
with respect to the copula parameters. The success of this method
obviously depends upon finding appropriate parametric models for
the margins, which may not always be so straightforward if they
show evidence of fat tails and/or skewness. Alternatively, without
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making any substantial assumptions for the margins, the univari-
ate semi-parametric cumulative distribution functions can by
plugged into the likelihood to yield a canonical maximum likeli-
hood (CML) method, (see Romano (2002)). Here the semi-
parametric approach is employed for estimating parameters of
the t-copula. To do so, firstly the marginal distributions are
obtained by transforming the standardized residuals to uniform
variates by the semi-parametric empirical CDF derived above, then
estimate the t-copula parameters using a canonical maximum like-
lihood (CML).

Maximum likelihood estimates of the parameters for each esti-
mated model are presented in Table 1 along with asymptotic stan-
dard error in parentheses:

For each of our three stock indexes, Table 1 reports the results of
the maximum likelihood estimation of each model’s parameters.
As the outcomes are very similar across indexes, the following
comments apply for all of them. First, the mean equations present
weak, although statistically significance, evidence on the first daily
autocorrelation of the index returns®. Second, for the three indexes,
GARCH coefficients «; and g, are significant at the 1% and their sum
is less than one implying that the GARCH model is stationary,
thought the volatility is fairly persistent since (co; + f;) is close to
one. Third, the estimated number of degrees of freedom of the con-
ditional t-distribution is smaller than 13 which suggests that the
returns on the selected indexes are conditionally non-normally
distributed.

In the middle of the Table 1 the ML estimation of the GPD
parameters fitted to the observations in excess over the thresholds
are presented. For all indexes, the estimated ¢ is found to be posi-
tive for both lower tail and upper tail of the filtered residuals dis-
tribution. This indicate that the tails on both sides of the
distribution are heavy and all moments up to the forth are finite.
Finally, the parameters describing the dependence are presented
at bottom of the table. The number of degrees of freedom esti-
mated for the t-copula is equal to 5.27 which is a very small value
given the fact that for v =4 the kurtosis of a Student-t random
variable with v degrees of freedom is infinite.

Once the parameters in each model have been estimated the
next step consists of generating maximum entropy trajectories
for up to 10days by Monte Carlo simulation. Thus, based on
parameters of Table 1, 100,000 samples for the simulated stopped
process were drawn for each risk factor over a 10-days horizon
forming the set S. To illustrate this process, 10,000 trajectories
for each risk factor are grouped according to its entropy and dis-
played on figure below:

The uncertainty set S* formed by 10,000 trajectories with high-
est block-entropy can be seen in Figs. 5-7. The red dotted lines rep-
resent the envelope scenario which were estimated using Extreme
Value Theory and a confidence level of o;=0.04% and
oy = 99.96%. We observe that paths in this set cover almost all
possible variation along the holding period which is desirable from
a risk viewpoint because in this case the optimal closeout strategy
will be determined considering a broad range of future outcomes
for each risk factor and no potentially harmful price variation is left
aside.

For comparative purposes, other 10,000 trajectories ranked
with low entropy are also presented as one can see in Figs. 8-10
and here some price variations are not accounted for determining
the optimal closeout strategy and therefore will potentially under-
estimate the margin requirements. In addition, we notice that from
the 100,000 trajectories that were originally generated only 244 of

5 Here a word of caution about the interpretation of this result is required. We are
not suggesting the returns are predictable or exhibit some form of time series
momentum as investigated by Moskowitz et al. (2012) but that the AR(1) filter is
required to remove memory in the data.

Table 1
Estimates of GARCH(1,1), tail distribution and t-copula.

Ibovespa IBrX 50 S&P 500
AR-GARCH

[ 8.04E-4 9.2384E-04 7.5074E-04
(2.7378E-04) (2.5220E-04) (1.4626E-04)

P —0.0029 0.0252 —0.0643
(0.0196) (0.0196) (0.0199)

Olo 4.90E-06 4.5790E-06 1.23E-06
(1.4098E-06) (1.2544E-06) (3.5279E-07)

oy 0.0617 0.0634 0.0898
(0.0109) (0.0088) (0.01)

b1 0.9222 0.9193 0.9035
(0.0086) (0.0111) (0.011)

t(v) 12 10 7
(2.3) (1.95) (0.97)
Lower Tail

14 0.083 0.07466 0.057
(1.55E-2) (5.47E-8) (8.36E-6)

o 0.7001 0.6901 0.7288
(1.21E-3) (5.17E-9) (4.26E-5)
Upper Tail

4 0.1387 0.1396 0.1072
(1.55E-2) (5.47E-8) (8.36E-6)

o 0.6175 0.6412 0.6206
(1.21E-5) (5.17E-9) (4.26E-5)
t-copula

Ibovespa 1 0.9686 0.6106

IBrX 50 0.9686 1 0.6082

S&P 500 0.6106 0.6082 1

DoF 5.27

them hit the envelopes scenarios (boundaries of our problem) and
therefore were stopped. This value represents a very high accep-
tance rate for our sampling algorithm.

Finally, it is worth to mention one advantage of this method
over Breuer et al. (2009) which consists in not imposing any
trade-off between plausibility and severity of scenarios. If one
needs to work with more severe scenarios, it is only necessary to
set higher WCS and the Monte Carlo simulation will fill the state
space comprised by the new envelope of more severe plausible
stress scenarios.

5.2. Robustness check

Even though t-copula presents desirable properties for handling
high dimension distributions of financial variables, the dependence
structure among pairs of variables might vary substantially, rang-
ing from independence to complex forms of non-linear depen-
dence, and, in the case of the t-copula, all dependence is
captured by only two parameters, the correlation coefficients and
the number of degrees of freedom. Due to this potential limitation,
we assess the t-copula results comparing its outcomes with a more
flexible structure given by a fast-growing technique known as pair-
copula originally proposed by Joe (1996).

Pair-copulas, being a collection of potentially different bivariate
copulas, is a flexible and very appealing concept. The method for
construction is hierarchical, where variables are sequentially incor-
porated into the conditioning sets, as one moves from level 1 (tree
1) to tree d — 1. The composing bivariate copulas may vary freely,
from the parametric family to the parameters values.

On the other hand, for high-dimensional distributions, there is a
significant number of possible pair-copulae constructions. For
example, there are 240 different constructions for a five-
dimensional density. To help organizing them, Bedford and
Cooke (2001, 2002) have introduced a graphical model denoted
the regular vine. The class of regular vines is still very general
and embraces a large number of possible pair-copula decomposi-
tions. Consider again the joint distribution F with density f and
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Fig. 7. High entropy trajectories for S&P 500 generated using Monte Carlo, S(w, t).
Fig. 5. High entropy trajectories for Ibovespa generated using Monte Carlo, S(w, t).
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Holding Period Fig. 8. Low entropy trajectories for Ibovespa generated using Monte Carlo, S(w, t).

Fig. 6. High entropy trajectories for IBrX50 generated using Monte Carlo, S(w, t).
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with strictly continuous marginal c.d.f:s Fq,. .., F; with densities f;.
First note that any multivariate density function may be uniquely
(up to relabel of variables) decomposed as:
fxa,.. fa) = Fa(xa) - f(Xa-11Xa) - f(Xa-2|Xa-1.Xd) ... f(X1]X2, ... Xa)
31)
The conditional densities in (31) may be written as functions of
the corresponding copula densities. That is, for every j:

f(X‘?/], Vzyeen,y vd) = CXVjIV,j (F(X|vﬁi)’ (F(X|V,j)) 'f(xlvii) (32)

Accumulated Returns (%)

where v_; denotes the d-dimensional vector v excluding the jth
component and Cyyv ,;(-,-) Tepresents a bivariate marginal copula
density.

In general, under appropriate regularity conditions, a multivari-
ate density can be expressed as a product of pair-copulae, acting on 04 ' ' ' : : ' : :
several different conditional probability distributions. It is
also clear that the construction is iterative in its nature, and that
given a specific factorization, there are still many different Fig. 9. Low entropy trajectories for IBrX50 generated using Monte Carlo, S(®, t).

Holding Period
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Fig. 10. Low entropy trajectories for S&P 500 generated using Monte Carlo, S(w, t).

re-parameterizations. Here, we concentrate on D-vine, which is a
special case of regular vines (Kurowicka, 2004), where the specifi-
cation is given in form of a nested set of trees. In this case, it is not
essential that all bivariate copulas should belong to the same
family. This is exactly what we are searching for, since, recall,
our objective is to construct (or estimate) a multivariate distribu-
tion which best represents the data at hand, which might be
composed by completely different margins (symmetric, asymmet-
ric, with different dynamic structures, and so on) and, more
importantly, could be pair-wise joined by more complex depen-
dence structures possessing linear and/or non-linear forms of
dependence, including tail dependence, or could be joined
independently. For example, one may combine the following
types® of (bivariate) copulas: Gaussian (no tail dependence, ellipti-
cal); t-student (equal lower and upper tail dependence, elliptical);
Clayton (lower tail dependence, Archimedean); Gumbel (upper tail
dependence, Archimedean); BB8 (different lower and upper tail
dependence, Archimedean).

As summarized at appendix A, we performed a comparative
study among t-copula and 18 possible pair copulae and we found
that even though a pair copula presents a better fit in our example
its results are not substantially different from a t-copula when
applied to measure tail risk in a portfolio. Additionally, despite
its appealing flexibility for describing dependence among risk
factors, pair copula requires a additional step where one should
specify the dependence structure itself, which in a real world
application, might be a high dimension problem. Therefore, we
decided to move forward in our study with a more parsimonious
construction given by the t-copula.

6. Comparison among methods of determining margin
requirements

In this last session we want to show the performance of
methodology to generate trajectories with maximum entropy
applied to the problem that motivated its development. Therefore
maximum entropy trajectories were generated according to the
framework established in the previous sections and shall be used
as part of the robust optimization problem that a Central Counter-
party solves when employing the concept of optimal closeout

6 See Joe (1996) for a copula catalog.

Table 2
Synthetic portfolios.
Strategy Instrument  Description
type
Portfolio 1 Outright Futures Long 1000 Ibovespa Futures
Portfolio 2 Outright Futures Short 1000 IBrX-50 Futures
Portfolio 3 Outright Futures Long 1000 S&P 500 Futures
Portfolio 4  pairs trade  Futures & Long 1000 Ibovespa ETF &
ETF Short 1000 IBrX-50 Futures
Portfolio 5  pairs trade  Futures Long 1000 Ibovespa Futures &
Short 1000 S&P 500 Futures
Portfolio 6  pairs trade  Futures & Long 1000 Ibovespa NDF &
NDF Short 1000 IBrX-50 Futures
Portfolio 7  pairs trade  Futures & Long 1000 Ibovespa NDF &
NDF Short 1000 S&P 500 Futures

strategy for determining margining requirements. To illustrate
our results, 7 synthetic portfolios were formed as outlined below
(See Table 2):

These portfolios were created to reproduce different asset
classes and strategies that are common in multi-asset or multi-
market CCPs. The first three portfolios are outright positions using
stock indexes futures. Portfolios 4 and 5 illustrate two pairs of trad-
ing strategies using exchange-traded instruments. While portfolio
4 is a market-neutral intra-sector pairs trade using two Brazilian
indexes, portfolio 5 is an inter-sector pairs trade where the inves-
tor would be long the sector that has the best outlook and short the
sector that could be vulnerable to a downturn. Finally, portfolios 6
and 7 share the same economic fundamentals of the two previous
ones but differ in the type of asset invested, where an OTC contract
is combined with an Exchange-Trade Derivative.

In addition, to reproduce the liquidity constraints that a CCP can
face during the closeout process, we establish that only 500 con-
tracts can be traded daily for each contract. A second constraint
that can arise in real life problems that was included here is a min-
imum time interval between the moment a default is detected and
the beginning of the execution of the default procedures. For
futures contracts and ETFs, which are exchange-traded contracts,
we set that the execution starts in T + 1 of the default, on the other
hand, for OTC instruments, NDFs, the CCP will typically organize an
auction among clearing participants and these instruments will not
be able to be liquidated before T + 5 of the default. A simplification
adopted in order to make the interpretation of the results easier
was to normalize all prices to $ 100.

For these 7 synthetic portfolios we calculated, using the CORE
approach proposed by Vicente et al. (2015), the amount of collat-
eral required when the uncertainty set is constructed as described
in the previous sections. The results obtained, called baseline
model, are compared in various dimensions. First we maintain
the original robust optimization problem (optimal closeout and
discrete minimax problem) but the uncertainty set is modified in
two ways: (i) maximum entropy trajectories are replaced by a
set of low entropy trajectories; (ii) historical scenarios’ - price vari-
ation up to 10 days from Jan 2, 2002 to Dec 31 2014. The second
dimension analyzed was to replace the discrete minimax problem,
where the uncertainty set is given by a finite set of scenarios, by
its continuous counterparty (optimal closeout and continuous mini-
max problem). Here we have implemented three different
approaches to describe the uncertainty set: (i) independent intervals
as Titiincl and Koeing (2004); (ii) ellipsoids as proposed by Ben-Tal
and Nemirovski (2000); (iii) polyhedral uncertainty as presented in
Bertsimas and Pachamanova (2008). Finally, we ignore the optimal

7 Historical Scenarios are the most common approach used in practice for
generating scenarios. Clearing House such as ICE, LCH and CME have adopted ten
years of historical data for calculating margin requirements
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Margin requirements across different models.

Optimal closeout

Naive closeout

Discrete minimax

Continuous minimax

SMC SMC Historical Titiincl & Ben-Tal & Bertsimas & Studer - Studer - t

high entropy low entropy Koenig Nemirovski Pachamanova Normal
Portfolio 1 15,979 6816 12,630 13,900 9924 14,057 7599 14,066
Portfolio 2 15,674 7906 14,446 13,900 9534 13,505 7278 13,485
Portfolio 3 9742 5603 8513 8300 7009 9,333 5469 9108
Portfolio 4 5725 4461 3610 21,017 4792 6,813 1912 3518
Portfolio 5 9300 7399 8935 19,113 3592 9,324 5707 10,560
Portfolio 6 6989 5001 5358 27,017 8791 6,904 3825 7036
Portfolio 7 17,100 12,477 15,591 20,149 6927 11,217 11,414 21,120

closeout strategy and pursue the Studer approach (Naive closeout)
where the maximum loss is determined considering a fixed time
horizon. In this case we have followed the implementation sug-
gested by Flood and Korenko (2013) for two particular elliptical dis-
tributions: (i) The multivariate Normal distribution; (ii) the
multivariate t-distribution.

The results found on Table 3 are very encouraging and indicates a
positive gain of our baseline model over different models and
methodologies for determining margin requirements. Portfolios 1-
3 comprise outright positions so it is expected that the worst-case
scenario should be as close as possible to the envelope. This is true
for our baseline model (for portfolio 1: 15,979 =500 x 100 x
(—0.1368) + 500 x 100 x (—0.1827)), on the other hand, the value
calculated using the low entropy scenarios (6,816) is far away of this
value and half of the historical scenario. Portfolios 4-5 comprise lig-
uid instruments and represent a relative trade between two stock
indexes and therefore we expect some level of risk offsetting. Our
baseline model provides this risk offsetting. In this case the low
entropy scenario recognize this dependence among risk factors
while the methodology of Tiitiincii and Koeing (2004) treat these
two risk factors independently and overestimate the risk of these
strategies. Portfolios 6-7 are also relative trades just like portfolio
4-5, but this time using instruments of different asset classes,
futures and NDFs. It is expected that due to the lag for beginning
of the execution of the default procedures these portfolios shall be
settle in more than 2 days and consequently this position is subject
to a higher price variation risk. Our baseline model recognizes this
potential scenario and results in a higher margin requirement. The
Studer method with the t distribution provided in some cases an
amount of collateral higher than our baseline model, however this
arises from the myopic treatment of this approach where all positions
are unwind in the end - carrying more risk; the main pitfall of this
method relies on the fact that this approach ignores completely the
liquidity constraint by assuming that there is sufficient liquidity to
buy/sell the defaulter portfolio without impacting the prices. The
method which provided results more in line with our baseline models
is Bertsimas and Pachamanova (2008). This is not surprising once
Bertsimas and Pachamanova (2008) also recognize dependence
among risk factors and the shape of the uncertainty set is not ellipti-
cal. However, the risk requirement for portfolio 2 using the Bertsimas
and Pachamanova (2008) approach is smaller than the historical and
this is not desirable once the historical scenarios can be seen as a min-
imum amount because the margin requirements should be enough to
cover at least all prices variation seen in the past.

7. Final remarks

Central Counterparties (CCPs) play an important role in the new
regulatory arena. Even though CCPs are intended to reduce sys-
temic risks in the financial system, it must also be recognized that
CCPs can create, or contribute to, systemic risks. Default by one or

more participants may expose the CCP to both market risk and lig-
uidity risk, since the Clearinghouse must ensure the timely settle-
ment of all the trades it guarantees as the CCP. Market risk
following a default event corresponds to the potential difference
in value between the rights and obligations of the defaulting par-
ticipant, given the market conditions prevailing at the time of fail-
ure treatment. To mitigate market risk arising from a default, most
of CCPs have implemented risk sharing mechanisms throughout
the chain of responsibilities. These mechanisms are based on three
classic components: defaulter pays (DP), survivor pays (SP) and
third party pays (TP). Prudent risk management practices recom-
mends that the first element of the safeguard structure is the col-
lateral posted by clients to cover the risk of their positions and
obligations. Therefore in an environment where CCPs are playing
a growing role, ensure that margin requirements are enough to
cover the resulting losses from the default of a counterparty should
be the first concern for all market participants.

The CORE® methodology, presented in Vicente et al. (2015), was
the first attempt to answer how to organize and schedule the liqui-
dation of heterogeneous portfolio to mitigate risk. Even though
Vicente et al. (2015) and Avellaneda and Cont (2013) have formu-
lated the CORE model as a robust optimization problem under con-
vex constraints, neither of them described how uncertainty sets are
constructed. Therefore, the main objective of this paper is to fill this
gap by proposing a flexible method to construct discrete uncertainty
sets, in which each element of this set can be seen as multi-period
stress scenarios, that shall be used in the optimization step.

Our approach consists in generating multi-period trajectories
via Monte Carlo simulation (MCS) that reproduce the stylized facts
present in financial times series. Additionally, in order to avoid the
curse of dimensionality usually present in Monte Carlo problems
we have resorted to a data reduction scheme, which relies on the
concept of maximum block-entropy. Finally, we align ourselves
with the recommendation from the Basel Committee on Banking
Supervision (2005) for stress tests regarding the plausibility and
severity of stress scenarios, as well as avoiding procyclicality of
margin requirements. When applied to determine the margin
requirements, the present method provides both qualitative and
quantitative results that outperform other robust optimization
models such as Ben-Tal and Nemirovski (2000) and Bertsimas
and Pachamanova (2008).

Finally, it is also worth mentioning that this framework for gen-
erating uncertainty sets could be used outside the CCP world for
any financial institution that need to conduct systematic stress
testing in a dynamic context.

8 BM&FBOVESPA (Sao Paulo based Clearing House) implemented the CORE model
and since August 2014 it has been the model for determining margin requirements
for every participant trading derivatives (exchange-traded and OTC - except single-
name equity derivatives) in Brazil. As of March, 3 2015 the total of margin
requirements calculated using both CORE and the framework described in this paper
is approximately USD 70 Billions.
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Appendix A. Pair copulae

This appendix presents the results of a comparative study per-
formed between pair copulae and t-copula. We chose three risk
factors to perform our analysis: Ibovespa, IBrX-50 and S&P 500.
Even though pair-copulae is a very flexible approach for handling
complex dependence among variable it requires the imposition
of significant number of pairs combinations. To overcome this
issue, we implemented an automated way to select pairs using
Akaike criteria. For every pair of copula we estimate its parameters
using maximum likelihood and choose the one with smaller AIC.
We tested a total of 18 different pair-copulae: independent; Gaus-
sian; t-copula; Clayton; Gumbel; Frank; Joe; BB1; BB6; BB7; BBS;
rotated Clayton; rotated Gumbel; rotated Joe; rotated BB1; rotated
BB6; rotated BB7 and rotated BB8. We also estimated the standard
t-copula using the same dataset. We depicts the results on table
below:

The configuration which presented the smaller AIC was given
by:

In fact, from Table 4 we can observe the superior performance
of pair-copulae when considered the statistical criteria. As a reality
check of our models we simulated 10,000 samples using each con-
figuration and computed percentiles (0.01-0.99) for each risk fac-
tor and compared them with the empirical distribution (see
Table 5).

We conclude from Tables 7 and 8 that both methodologies are
capable to produce results in line with those observed in practice
(Table 6). Finally, we observe that pair-copula provides results very
close to those obtained with t-copula, however, it embeds an extra
and time consuming step formed by the process of obtaining the
right configuration of each pair of copula, so we did not find
enough elements to replace the parsimonious t -copula. It is impor-
tant to mention, we could find different results for a particular risk
factors but for a considerable number of them the results found
here prevailed.

Table 4
Fitting results.
Pair Copula with AIC t-copula

Log-Likelihood 565.8 521.1
AIC -1121.6 —1038

Table 5

Best pair-copula configuration.
Pair copula Family Parameters
IBrX-Ibovespa BB1 (0.15, 1.29)
S&P -Ibovespa BB8 (2.45, 0.76)
IBrX-S&P given Ibovespa Rotated Clayton -0.073

Table 6
Empirical percentiles for each risk factor.
0.01 0.99
Ibovespa -3.87 3.78
IBrX —3.57 3.76
S&P -1.48 1.73

Table 7
Losses percentiles for each risk factor using pair-copulae.
0.01 0.99
Ibovespa —4.000 498
IBrX —3.282 3.721
S&P —1.425 1.650
Table 8
Losses percentiles for each risk factor using t-copula.
0.01 0.99
Ibovespa —4.020 4,988
IBrX -3.282 3.716
S&P —1.426 1.652
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