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Abstract
In this paper we develop an econometric model to empirically test the hard-to-borrow model

of Avellaneda and Lipkin (2009) where asset prices jump as result of “buy-in” procedures.

The model is estimated using an extended version of simulated maximum likelihood (SML)

for a selected group of Leveraged ETF, because these instruments have been sporadically

hard-to-borrow and are liquids. In general we do not find enough statistical evidence

supporting that hard-to-borrow effect impacts LETFs. On the other hand, we do find

statistical significance supporting the presence of jumps for all Leveraged ETFs in our

sample.
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1 Introduction
Securities lending is a financial transaction through which, for an agreed fee,
holders of securities (lenders) authorize their transfer to a third party (borrower).
The borrower is free to sell such securities or use them for any other purpose, for
instance fulfill an obligation to deliver securities for the aim of settling another
transaction. A frequent trading strategy which is linked to securities lending
transactions is short-selling, in which investors borrow a stock to sell it, aiming
to make a profit on its decline.

In general, a securities lending transaction is performed over-the-counter
(OTC), where borrowers and lenders bilaterally agree the terms. In many

Submitted on 14 August 2014; Reviewed on 02 October 2018

F The authors would like to thanks Milton Barossi-Filho, Rodrigo De-Losso and two anonymous referees for very useful suggestions.

For comments we are indebted to numerous seminar participants at 34th Meeting of Brazilian Econometric Society and FEA/USP
for theirs comments. Alan De Genaro gratefully acknowledges the financial support of B3 and Courant Institute for its generous
hospitality during the period that part of this research was conducted. Any remaining errors are our own.

*Getulio Vargas Foundation, FGV/EAESP.

**Courant Institute of Mathematical Sciences, NYU

Ralan.genaro@fgv.br Ravellane@cims.nyu.edu

Brazilian Review of Econometrics
vol. 38, n. 2 pp. 287–319 December 2018

mailto:alan.genaro@fgv.br
mailto:avellane@cims.nyu.edu


Alan De Genaro and Marco Avellaneda

countries, among them the USA, custodian banks that clear and hold positions
for large institutional investors have been the largest equity lenders, which with
the beneficial owner’s permission, they can act as lending agents for the beneficial
owners by lending shares to borrowers. On the other side, the largest borrowers of
stocks are brokerage firms facilitating the short demand for their own proprietary
trading desks, for their hedge fund clients, and for any other investors. A
common practice performed by brokerage firms to facilitate retail short sales
involves borrow directly stocks from the accounts of their own customers.

In practice, when an investor places an order to sell short, the brokerage firm
checks to make sure that the shares are available for lending. This is usually
done by consulting a hard to borrow list, which provides an up-to-date catalog
of securities used by brokerage firms to indicate what securities are difficult
to borrow for short sale transactions. If the stock is not on the list, then the
brokerage firm assumes that shares can be easily obtained and proceeds with
processing the short sale order and by doing so the brokerage firms comply with
regulation of the affirmative determination requirement for short sales.1

A feature embedded in the majority of all securities lending transactions is
the right to terminate a stock loan at any time.2 The recall right embedded
in securities lending transactions allows the stock lender’s to recall the shares
at any time before the contract ending without any rebate been paid to the
borrower. If the borrower’s loan get recalled by the lender, it is the borrowers’
responsibility to return shares to the lender either by buying shares in the market
or by borrowing the shares from another lender. If the borrower fails to return
the shares, the lender can use the borrower’s collateral to buy shares to cover
the loan, a procedure known as a buy-in. When a stock become hard to borrow,
the borrower can not promptly find a lender willing to lend the shares and he or
she is more prone to be bought-in by the firm in charge of the loan which needs
to deliver shares to the lender according to the existing settlement agreement.
Other things being equal, an unexpected buy-in event may suddenly increase
the demand far beyond the existing supply and cause a jump in the asset prices.

In turn, short selling is a controversial topic both in the academic literature
and in the financial markets regulation. According to the US Securities Exchange

1 NASD rule 3370, https://www.sec.gov/rules/sro/34-49285.htm
2 If the lender is a pension fund, there is an explicit requirement established by force of the
Employee Retirement Income Security Act (ERISA) of 1974. In case of mutual funds, recall
rights are required under the Investment Company Act of 1940.
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Commission (SEC), short-selling is defined3 as “the sale of a security that the
seller does not own or that the seller owns but does not deliver. In order to
deliver the security to the purchaser, the short seller will borrow the security.”

Regulators have often alleged that a practice of short selling magnifies
the decline of asset prices, it has been banned and restricted many times
through history. To cite some notorious instances: the Dutch Tulip-mania
in the seventeenth century, the U.S. stock price crash in 1929, the NASDAQ
price bubble of 1998–2000 and more recently the housing price bubble and the
credit crunch of 2008. The most recent example was in September of 2008 with
the prohibition of short-selling by the SEC for 799 financial companies in an
effort to stabilize the selling pressure for those companies. At the same time
the U.K. Financial Services Authority (FSA) prohibited short selling for 32
financial companies. In September of the same year, Australia enacted even
more extensive measures with a total ban of short selling (ASIC, 2008).

Since Diamond and Verrecchia (1987) an extensive list of papers have tried
to measure empirically the impact of short-sale constraints on asset prices.
According to theory, the level of short-selling can predict short-run future returns
through two channels. One channel relates to the demand-side of the stock
lending market: short-sellers are informed. The other channel relates to the
supply-side: short-sellers are restricted. Measuring the importance of each
channel is empirically challenging when, in general, supply and demand in the
stock lending market are not directly observable.

Over the last 30 years, an extensive literature has been produced on this
topic. Among others,4 Lamont (2004) discusses evidences that supports the
overpricing hypothesis by using data from three episodes: short selling in 1920s
and 1930s, Palm/3Com in the year 2000 and the tech stock mania of 1998–2000.
Evidence that short-sellers take positions in firms with price declines is provided
by Lamont (2004) who find that aggregate short-interest for NASDAQ-listed
companies is positively associated with prior month declines in the NASDAQ
index. Chague, De-Losso, De Genaro, and Giovannetti (2014) performed a
comprehensive analysis on the Brazilian market and found evidence in favor of
both the information hypothesis and the overpricing hypothesis. According to
their findings, short sellers are informed traders, however, because short sellers

3 This definition can be found on the SEC website, http://www.sec.gov/rules/concept/34-42037
.htm

4 To cite only the most recent papers: Saffi and Sigurdsson (2011), Boehmer and Wu (2013).
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are usually unable to sell short as much as they are willing to, prices do not
reflect all information present in the market.

It is important to note that the critics of short-selling strategies may have a
partial understanding on how this strategy works on practice. As pointed out
by Abreu and Brunnermeier (2002), to implement a short selling strategy the
investor is taking risks and is also subject to holding costs. For example, several
explicit costs arise when an stock is sold short. First, short-sellers must hold the
short-sale proceeds in a margin account that pays minimal interest. Moreover, if
the stock is “on special” (or hard to borrow) that is, if it is difficult to locate
shareholders who are willing to lend the share, short-sellers will receive a negative
interest rate on their short-sale proceeds. In other words, the short-seller is
indirectly paying a lending fee. Second, margin requirements force short-sellers
to put additional money into low interest bearing margin accounts. Finally, a
latent risk arises for loans without a guaranteed term, because under a recall
notice the short seller might need to cover the short position in a rising market.
Moreover, short positions in hard-to-borrow stocks may be forcibly bought in
by the broker. Therefore, the short-selling strategy does not provide a risk free
profit for the investor, as matter of fact, the short-seller carry many risks and
their profit or loss is affected by whether and when their short stock is bought
back in and at what price.

As pointed above, a hard-to-borrow stock is essentially a security that
presents an increased likelihood of buy-ins. In turn, the buy-in events may
potentially introduce discontinuous movements in the asset prices as result of a
sharp increase in its demand by short-seller seeking to cover a short position. In
this sense, the occurrence of jumps are no longer unobservable, but could be
identified with buy-in events. However buy-ins historical data are not available
so our identification strategy will focus on an observable variable, the lending
rate.

The literature on jumps has many papers where point process intensity is
modeled as a function of state variables, among others, we can cite Johannes,
Kumar, and Polson (1999) which specify the probability of a jump arrival
as a function of a set of state variables, which includes, for instance, lagged
jumps or market variables. Another formulation proposed to link jumps to
observable variables is the paper by Piazzesi (2005), where jumps intensities
depend on the state of the economy and the meeting calendar of the Federal Open
Market Committee. Recently De De Genaro and Avellaneda (2018) proposed
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the adoption of a deterministic point process to describe jumps around central
bank meetings and obtained a closed-form solution for pricing overnight interest
rate derivatives.

Differently from aforementioned works, in the present paper we do not focus
either to measure whether and how short-selling constraint impacts asset prices,
or whether short-seller can predict better future stocks performance. Here we
want to investigate whether spikes in lending rate, acting as a proxy for buy-in
events of hard-to-borrow stocks, can impact asset prices. To achieve our go we
implement the model of Avellaneda and Lipkin (2009) extended to incorporate
an affine intensity to drive the point process and so make the model tractable
for estimation.

In line with Avellaneda and Lipkin (2009) we formulate a model to describe
the price evolution of a stock and through a no-arbitrage argument we identify
the lending rate as the intensity driving the point process which impacts stock
prices. Once the theoretical model is set up we turn to check empirically whether
the lending rate for hard to borrow stocks impacts its price for a selected group
of Leveraged ETFs (LETF) prices. The model is estimated using an extended
version of the method of simulated maximum likelihood (SML) developed by
Pedersen (1995) and Brandt and Santa-Clara (2002), modified here as in Piazzesi
(2005) to include jumps.

The rest of this paper is organized as follows. Section 2 presents an overview
of how securities lending transactions are carried. Then, Section 3 presents the
theoretical model to describe the asset prices under buy in effects. Section 4
describes the model’s estimation and its computational aspects. In section 5
we present our estimation results. Finally, section 6 presents our concluding
remarks.

2 The securities lending market
Since late 80’s different international entities such as BIS and G30 have recom-
mended the development of securities lending programs as means to increase
efficiency and reduce the risk linked to securities settlement. According to
the G30’s recommendation,5 “competent authorities should allow equities to
borrowed and lent as loans, in such a way to maximize the settlement of transac-
tion with securities”. A more in-depth description of securities lending markets

5 G30, Recommendation 7 (G30, 2003, pp.85–87).
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might be found in Evans, Geczy, Musto, and Reed (2009), Duffie, Gârleanuc,
and Pedersen (2002), and D’Avolio (2002). Securities lending services evolved
significantly in the last years increasing market liquidity thus benefiting investors
with both short and long strategies.

In a stock loan transaction, the security is transferred to the borrower, who
undertakes to return all dividends to the lender together with the securities.
The borrower is required to pledge collateral as a way to guarantee that their
obligations will be met. Collateral is almost always cash, and the standard
collateral for U.S. equities is 102% of the shares value and 105% for international
securities. At the loan origination the parties negotiate the lending rate and
rebate rate, which is the amount of interest on the collateral that the lender will
rebate to the borrower. Under SEC Regulation T, shorting retail customers of
brokers must, in addition to the cash collateral, post 50% of the market value
of the stock in additional collateral, although this additional collateral may be
posted in Treasury Bills. The equity-borrower therefore is also a lender of cash,
and the rebate rate is his interest on this loan. The rebate rate is determined by
supply and demand in the market for borrowing stocks and effectively determines
the price of a stock loan. In the fixed income market, in particular with repo
transactions, there is the General Collateral financing concept, or GC, which
are a type of repurchase agreement that is executed without the designation
of specific securities as collateral until the end of the trading day. The same
terminology and measurement applies in the equity market, except that the
interest rates in Repos correspond to rebate rates in equity loans. The majority
of loans in the equity lending market are made in widely held stocks that are
cheap to borrow. However on less widely held stocks or securities with large
borrowing demand (hard to borrow) rebates may be reduced, in which cases,
the stock are said to be trading special or just special.

As mentioned before, most loans are on a continuing basis, meaning they are
subject to renegotiation and to termination by either party every day. Term
loans, which are not open to renegotiation until a specific future date, are
also available but less common. Given notice of recall, the borrower has a
predetermined number of days6 to return the shares. In this case the borrower
can try borrowing other shares from another lender, or otherwise cover the short

6 The number of days vary according to the market. In the US exchange Act Rule 15c3-3(d)(1)
requires that the securities loaned must be returned within five business days following the
recall notice. In Brazil, in case the lenders recall the securities, the borrower has until T + 4
to provide the securities.
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position by purchasing the shares in the open market. If the borrower fail to
return the stocks within this period, the lender has the legal right to use posted
collateral to buy in, that is, must buy the stock outright. With a buy-in, the
short sale is effectively interrupted. A theoretical model to incorporate the
buy-in effects over the asset prices was developed by Avellaneda and Lipkin
(2009).

Finally, securities lending is not limited to strategies that allow investors to
profit from a price decline or to obtain securities to deliver under a prior lending
agreement, stocks may also be borrowed in order to gain access to voting rights
or to hedge a trading strategy, such as options market-maker. Options market
makers, for example, hedge long options positions by shorting the underlying
stock. While most stock market maker positions are closed out at the end of
each day, options market makers take short positions that last until an option
contract expires, which may be weeks or months in the future. Therefore, stocks
that become hard to borrow impose an additional source of risk for options
market makers because he may be subject to frequent buy-ins on their short
position.

3 The theoretical model for hard to borrow
stocks

In order to introduce the financial framework we will work with, we consider a
filtered probability space

(
Ω,G,{Gt}t≥0,P

)
, where Ω is the set of all the possible

events, {Gt}t≥0 is filtration, and P represents the so-called objective (real-world)
measure.

Avellaneda and Lipkin (2009) propose a model to describe the price-evolution
of stocks that are subject to restrictions on short-selling, generically referred
to as hard-to-borrow. The model consists of a coupled system of stochastic
differential equations (SDE) describing the stock price, St and the “buy-in rate”,
λt, an additional factor absent in standard models. Here, we extend Avellaneda
and Lipkin (2009) model to make it tractable for estimation.

To properly model stochastic timed events, we assume that there is a counting
process (Nt)t∈R+

, counting the number of events that occur up to time t and
define τj for the time of the jth event of interest after a starting time:

Nt =
∑
j

1{τj≤t}, (1)

Brazilian Review of Econometrics 38(2) December 2018 293



Alan De Genaro and Marco Avellaneda

where (τj)j≥1 are inaccessible stopping times as defined in Bremaud (1981).

Let (Yj)j≥1 denote a iid sequence of random variable with probability
distribution ν(dy) on R, independent of the point process (Nt)t∈R+

, then Jt

defines a compound point process:

Jt =
Nt∑
j=1

Yj . (2)

Given that NT = n, the n jump sizes of (Jt)t∈R+
on [0,T ] are independent

random variables which are distributed on R according to ν(dy). Additionally,
if we assume: (i) N0 = 0; (ii) Nt has independent increments; and (iii) Nt −Ns
is a Poisson random variable with a given intensity λt, then (Nt)t∈R+

is called a
Poisson point process. By construction, compound Poisson processes only have
a finite number of jumps on any finite interval.

While the Wiener process is itself a martingale, a Poisson process as such is
not. It becomes a martingale if one subtracts from Nt the process given by its
mean. Indeed,

Mt = Nt −
∫ t

0
λtdt (3)

is an Gt-martingale by the G0-measurability of λt and by assuming in addition
that λt is integrable.

Under the objective measure, P, the price-evolution of stock satisfies the
SDE:

dSt
St−

= µdt+ σdWt + dJt, (4)

where St− = lims↑tSs and processes (Wt)t≥0 and (Jt)t≥0 are, respectively, a
standard Brownian motion and a compound Poisson process with intensity λt
under the measure P.

The number of jumps, Nt, t ≥ 0, is described by the doubly stochastic
Poisson process (DSPP) with intensity λt, satisfying the following property: for
all T > 0, points 0 = t0 < t1 < · · · < tl = T and values k1, . . ., kl in {0,1, . . . ,},

P
(
Ntj −Ntj−1 = kj ,1 ≥ j ≥ K

)
= E

e−Λ0,t

l∏
j=1

1
kj !

Λkj

tj−1,tj

 , (5)
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where

Λt,t′ =
∫ t′

t

λudu, for 0 ≤ t < t′. (6)

Here λt, t ≥ 0, is the stochastic jump’s intensity.
In what follows, we also assume that the intensity λt is driven by an one-

dimensional Feller (a.k.a. CIR) process, that is, that λt is a random process
with non-negative values and solves

dλt = κ(θ − λt)dt+ σ2
√
λtdWt. (7)

Under the model’s assumptions, asset prices are subjected to jumps. The
inclusion of jumps gives rise to an incomplete market model in a sense that we
have a family of measures,M, Q equivalent to P.

In order to characterize the elements ofM, the set all absolutely continuous
measures Q ∼ P, we make use of the two versions of Girsanov’s Theorem,7 where
one is for changes in the Brownian motion and one for changes in a nonexplosive
counting process with intensity λt. Under the Girsanov’s Theorem we may state
that the Radon–Nikodým derivative is given by

dQ
dP = exp

{∫ t

0

[
(1−Ψs)λs −

1
2Υ2

s

]
dt+

∫ t

0
ΥsdWs +

∫ t

0
logΨsdNs

}
. (8)

Measure changes for jump processes are more flexible than those for diffusions.
Girsanov’s theorem only requires that the intensity be predictable and that
the jump distributions have common support. With constant intensities and
state-independent jump distributions, the only constraint is that the jump
distributions be mutually absolutely continuous (see Theorem 33.1 in Sato, 1999
and Corollary 1 of Cont & Tankov, 2003). Assuming that Novikov’s condition is
satisfied for Υt and that λt is L1(Ω), we can state:

dWQ
t = dWt −Υtdt,

dMQ
t = dNt −Ψtλtdt.

(9)

Thus, the Radon–Nikodým derivative for an absolutely continuous change of
measure from P to Q, implies a translation of the Wiener by Υt and a change of
the Poisson intensity from λt to Ψtλt. Therefore with the help of equation (3)

7 Details can be found in Bremaud (1981).
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the dynamics of St under Q become

dSt
St−

= (µ+ Υtσt + Ψtλt)dt+ σdWQ
t + dMQ

t . (10)

As pointed above, the equity-borrower is also a lender of cash, so the risk free
rate, rrf

t , is his interest on this loan and simultaneously he has to pay borrow-rate,
rL
t . Thus his money account evolves as dBt = (rrf

t − rL
t )Btdt. So our strategy to

choose one element fromM is to define Bt as numeraire. Thus we immediately
see that if Υt and Ψt are chosen such that µ + Υtσt + Ψtλt = rrf

t − rL
t then

we obtain a Q martingale measure for the discounted price B−1
t St. When the

underlying variable is a traded asset, the Black and Scholes (1973) argument
eliminates the need for the market price of risk and among many forms for Ψt

we choose:

Υt = σ−1(rrf
t − µ),

Ψt = rL
t

λt
.

(11)

For interpretation purposes, we refer to Υt and Ψt as risk premia. Concerning
the market price of risk, Υt, we have a standard definition, whereas Ψt is the
market price of jump-risk. With these constraints we can show that the discounted
stock price B−1

t St is a Q-martingale.
From equation (11) we make explicit the relation between the jump intensity

and the lending rate, which is very useful for model’s estimation and identification,
since the intensity λt is no longer a latent variable. Even though we have
introduced a martingale measure, our estimation strategy will only rely on
time-series returns rather than cross-section of options prices. There is a large
literature on the use of joint data on the underlying asset and option prices for
the joint estimation of the model, among others, we cite Bollen (1997), Eraker
(2004), and Broadie, Chernov, and Johannes (2007).

It is important to note that the absolute continuity requirement implies that
certain model parameters, or combinations of parameters, are the same under
P and Q measures. This is a mild but important economic restriction on the
parameters. This implies that these parameters can be estimated using either
equity price returns or option prices, but that the estimates should be the same
from either data source. In our model, we have followed a identification strategy
where the intensity is no longer a latent variable thus all the parameters are the
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same under both measures, but this equality may not be valid when a different
form to characterize the market price of jump risk is assumed. One way to
impose this theoretical restriction is to constrain these parameters to be equal
under both measures, it is the time-series consistency as advocated by Broadie
et al. (2007).

4 Model Estimation
In this section we present the simulated maximum likelihood (SML) method
introduced by Pedersen (1995) and Brandt and Santa-Clara (2002) which is
implemented to estimate the parameters of our model. An equivalent implemen-
tation of SML with jumps was performed in Piazzesi (2005). The SML allows
the estimation of a wide variety of diffusion processes, including those which
lack of closed-form expressions for the transition density. The main idea under-
lying SML is to numerically evaluate the transition probabilities of the process
corresponding to all pairs of values taken by the state variable at consecutive
times. If a discretization of the time space axes is properly refined, the resulting
transition density approaches a Gaussian distribution. The likelihood estimator
becomes a reliable approximation of the exact maximum likelihood estimator,
namely the one stemming from the exact, yet unknown, transition density of
the process.

We consider the problem of estimating the parameters of a continuous-time
jump-diffusion process St satisfying a stochastic differential equation (SDE):

dSt = µ(St, t)dt+ σ(St, t)dWt + dJt, (12)

where µ(·) is the drift, and σ( ·) is the diffusion coefficient. Here Jt is a compound
jump process as defined in equation (2).

We assume that (12) has a nonexploding, unique solution. Explosive solutions
are excluded because in their case no transition density exists. Among the various
alternative sets of sufficient conditions ensuring that this assumption actually
holds, the simplest one is that µ(St, t) and σ(St, t) satisfy global Lipschitz and
linear growth conditions.8

In this setting, the probability of no jump, P
(
Nti+1 −Nti = 0

∣∣λti), between
ti and ti+1 = ti + δ, is given according to De De Genaro and Simonis (2015)

8 Karatzas and Shreve (1991) and Aït-Sahalia (2002) discuss alternative sets of sufficient
conditions which can be better suited to deal with SDEs which do not meet the previous
requirements and are frequently encountered in finance.
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who derived a closed-form solution for the probabilities of the corresponding
DSPP, Nt by exploring the affine structure of λt stated by (7):

P(Nti+δ −Nti = 0|λti) = exp(α(δ) + β(δ)λti), (13)

where

α(δ) = 2κθ
σ2

2
ln
(

2ζ
(
e(ζ+κ)/2)

(ζ + κ)(e−ζδ − 1) + 2ζ

)
(14)

and

β(δ) =
[

2
(
e−ζδ − 1

)
(ζ + κ)(e−ζδ − 1) + 2ζ

]
(15)

with
ζ =

√
κ2 + 2σ2

2 . (16)

We assume, as in Merton (1976), that jump sizes are Gaussian distributed
with mean µY and variance σ2

Y , in which case ν(dy) = φN
(
µY ,σ

2
Y

)
. Essentially,

this component adds mass to the tails of the returns distribution. Increasing σY
adds tail mass to both tails while a negative (say) µY implies relatively less mass
in the right tail, and vice versa. A far more general formulation to describe jumps
is by means of a Generalized Hyperbolic distribution introduced in finance by
Eberlein and Keller (1995). An important aspect is that Generalized Hyperbolic
distributions is a five-parameters family and embrace many special cases as its
limiting distributions, for instance the normal inverse Gaussian (NIG), Student-t,
Variance-Gamma (VG) and Normal distributions.

Given the possibility of nesting various models with the Generalized Hyper-
bolic distributions it is tempting to estimate parameters for this hyper-family.
The point is that by increasing the dimension of parameter space the maximiza-
tion problem becomes less tractable. As pointed by Prause (1999) the likelihood
function presents relevant flat regions over the parametric space, consequently
using the Generalized Hyperbolic family leads to imprecise parameter estimates,
unless some ad hoc parametric restrictions are made, which amounts to choosing
a subfamily of models. This aspect orientated our decision toward choosing the
Normal distribution for describing the jumps size.

4.1 Estimation framework
The vector S = (S0,S1, . . . ,SN ) gathers a set of observations of the process as
recorded at consecutive times t0, . . . , tN . If the exact transition density function
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pS = pS(St+1, t+ 1,St, t;θθθ) is available in analytic form for any pair of times
t < t+ 1 and states St+1, St, the likelihood function of the process is defined as
the joint density computed at the observed value S, i.e.,

L(θθθ;S) =
N−1∏
n=0

pS(Sn+1, tn+1,Sn, tn;θθθ). (17)

The parameter vector is θθθ = (µY ,σY ,µ,σ,κ,θ,σ2)′; θθθ is an unknown parameter
in a bounded set ΘΘΘ ⊆ R7. Here µY and σY are, respectively, the average size and
standard deviation of jumps, σ is the volatility and µ the drift of the Brownian
motion process, κ, θ, and σ2 are respectively the speed of mean reversion, the
long term average and the volatility of the intensity process. Note that classical
compound Poisson process is obtained when σ2 = 0 and λ0 = θ, then λt = θ at
all t.

The maximum likelihood estimator determines the parameter value maximiz-
ing the likelihood function computed on a sample S. The theory of stochastic
processes estimation using maximum likelihood is largely developed (see, e.g.,
Prakasa Rao, 1999). However, the method requires an analytical expression for
the transition densities of the process, pS . When the transition density pS does
not exist in closed-form thus it must be approximated. The Simulated Maximum
Likelihood (SML) method, developed independently by Pedersen (1995) and
Brandt and Santa-Clara (2002), approximates transition function values using
Monte Carlo simulation. This technique provides an answer whenever other
approximating methods fail. On the other hand, it suffers from all the typical
inconveniences of simulation-based techniques such as intensive time consuming.
In order to reduce the computational time, we estimate the model using parallel
computing. Parallel computing is suitable to solve problems involving Monte
Carlo simulation, because each repetition can be assigned to a different calcula-
tion’s core. As SML is basically a Monte Carlo with different layers we were
able to speed up our results 20 times when compared to a serial estimation.9

The SML provides an approximation for the transition function

pS(St+1, t+ 1,St, t;θθθ)

between consecutive times tn and tn+1. For the sake of simplicity, we assume

9 More details about the parallel computing implemented in this paper are available upon
request.

Brazilian Review of Econometrics 38(2) December 2018 299



Alan De Genaro and Marco Avellaneda

that sampling occurs on an evenly ∆ spaced time grid t0, . . . , tN . Each interval
[tn, tn+1] is first split intoM subintervals of length δ = ∆

M . Next, the transition is
rewrite using the Chapman–Kolmogorov equation as the convolution of densities
over two consecutive intervals [tn, tn+1 − δ] and [tn − δ, tn+1]:

pS(Sn+1, tn+1,Sn, tn;θθθ)

=
∫
R

p(Sn+1, tn+1,Sn, tn − δ;θθθ)p(s, tn+1 − δ,Sn, tn;θθθ)ds (18)

This expression can be interpreted as the expected value of the transition
probability p(Sn+1, tn+1,Sn, tn − δ;θθθ) as a function of s, with respect to the
distribution of the process S at time [tn, tn+1 − δ]:

pS(Sn+1, tn+1,Sn, tn;θθθ) = Etn,Sn [p(Sn+1, tn+1,S(tn+1 − δ), tn+1 − δ;θθθ)]. (19)

To compute this expectation, we need information about two quantities: (i) an
expression for p; and (ii) the distribution of process S at time [tn+1 − δ] given
S(tn) = Sn. Within the SML framework, both quantities are computed using
numerical approximations. To this aim, we implement the Euler–Maruyama
(EM) approximation10 of St by mean of a continuous stochastic process Stn
satisfying the iterative scheme over a refined time grid:

SMtn+(m+1)δ = SMtn+mδ + µSMtn+mδδ + σSMtn+mδ
√
δ × ε1n,m

+ 1{tn+mδ}
(
µY + σ2

Y × ε2n,m
)
, (20)

where εin,m for i = 12 are independent standard Gaussian variables defined for all
discretization indices (n = 0, . . . ,N − 1) and all refining indices (m = 0, . . . ,M − 1).
The convergence of numerical schemes for SDEs needs conditions on the drift
and diffusion coefficients. These conditions are namely linear growth and global
Lipschitz conditions.11

Kloeden and Platen (1999) show that as the accuracy of the Euler–Maruyama

10 The literature on numerical methods for stochastic differential equations provides more efficient
discretization schemes that Euler–Maruyama, such as the Milstein and Platen–Wagner schemes
but here we follow Brandt and Santa-Clara closely. Elerian (1998) and Durham and Gallant
(2002) show that the SML estimator can be generalized to any discretization with closed-form
transitions, including the Milstein scheme.

11 We note that Yamada (1978) relaxed the global Lipschitz condition, whilst Kaneko and Nakao
(1988) have shown that the Euler scheme converges in the strong sense, to the solution of the
stochastic deferential equation whenever path-wise uniqueness of the solution holds.
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discretization increases, or formally asM →∞ and thereby δ→ 0, the transition
density of the EM discretization weakly converges to the corresponding transition
density of the continuous-time process. Kloeden and Platen (1999) also show
that with constant diffusion coefficients, Euler–Maruyama and Milstein method
coincide, so are of the same order of convergence.

The jump occurrence is described by the indicator function

1{tn+mδ} =

1, if tn +mδ is a jump time,

0, otherwise.

Furthermore to simulate the jumps, we use the fact that the jump time distri-
bution can be computed in a closed-form. Initially consider the point process
Nt = 1{τ<t} with the intensity following the mean reverting square root process
as defined by equation (7) which starts at λ0 > 0. In addition, provided that κ,
θ > 0, and 2κθ > σ2, the process stays always positive during the entire lifetime.
Then, P(τ < t) = 1−E

[
exp
(
−
∫ t

0 λudu
)]

and, in the case above, this quantity
can be calculated analytically by equation (13). This computation, coupled with
the inverse transformation method, leads to an exact algorithm for simulating
jump time.

To obtain an approximation to p, one could use the asymptotic expansion
method of Aït-Sahalia (2002, 2008) or Li (2013). However we have adopted
a more simple approach by means of the Euler transition density, which is
valid over short time intervals. Therefore, the first approximation involves the
expectation in expression (19), which is calculated by running a Monte Carlo
simulation of the discrete time process SM via equation (20). The estimate
resulting from K sample paths is as follows:

pS(θθθ) ' 1
K

K∑
i=1

p
(
Stn+1tn+1,S

M
i,tn+1−δ, tn+1 − δ;θθθ

)
. (21)

Therefore, p is the transition density of the discretized process on the interval
[tn+1 − δ, tn+1] and SMi,tn+1−δ describes the realizations of the process SM drawn
over the same time interval. Next, since δ in (20) is small in comparison to
∆, we approximate the transition function, p in (21) by the transition of the
discrete process (20) on the time interval [tn+1 − δ, tn+1].

Moreover, jump sizes are normally distributed so the transition density of the
discrete process between ti and ti+1 is a mixture of Normal distributions. Finally,
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we assume that no more than one jump can occur on each interval of length δ
in the refinement of the time axis, so p(i)

0 = P
(
Ntn+1 −Ntn+1−δ = 0

∣∣λt) is the
probability of no jump over the interval [tn+1 − δ, tn+1] which is calculated by
equation (13). Therefore, the transition density p can be expressed as a mixture
of two Gaussian random variables weighted by the probability of zero or one
jump in δ:

p
(
Stn+1tn+1,S

M
i,tn+1−δ, tn+1 − δ;θθθ

)
= p

(i)
0 φN

(
(1 + µ)δSMi,tn+1−δ,σ

2δSMi,tn+1−δ

)
+
(

1− p(i)
0

)
φN

(
(1 + µ)δSMi,tn+1−δ + µY ,σ

2SMi,tn−δδ + σ2
Y

)
,

(22)

where φN is the Gaussian density.
As noted, the transition density (22) is a mixture of Normal densities and

Kiefer (1978) has shown that for this type of distribution the global maximum
for the log-likelihood function (17) does not exist. This is because a singularity
arises when Sn is exactly equal to µ for any n then as σ → 0 the equation
(22) increases without bound. However, it is still possible to obtain a reliable
estimates under mild assumptions, Hamilton (1994) and Kiefer (1978) have
offered remedies to deal with the singularity problem associated with the mixture
density. Here, we follow Kiefer (1978) by assuming that the parameter space is
compact and large enough to include the true parameters.

Once we have computed the previous steps for all observations n, the
likelihood function can be evaluated by formula (17), where we replace pS by
jointly using (21) and (22). This strategy gives rise to a consistent approximation
of the likelihood function L(θθθ;S). Pedersen (1995) and Brandt and Santa-Clara
(2002) prove that under the usual regularity conditions if M → ∞, and K → ∞,
with K1/2/M → 0 then both the SML estimator and the maximum likelihood
estimator share common asymptotic properties.

4.2 Computational aspects
Although the simulation-based approach has great intuitive appeal, it can be
computationally burdensome. In general most of the standard algorithms to
optimize12 L(θθθ;S) are quite sensitive to the initial condition θθθ0 passed on L(θθθ;S).
To overcome the usual difficulties arising during the optimization procedure

12 For instance, fminserach or fminunc in Matlabr.
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we have implemented a two step estimation strategy. During the first step, we
preprocess the optimization through a coarse grid global method to avoid getting
trapped in a local minimum. We start the optimization, by running a Pattern
Search (PS) optimization algorithm.13 PS is an evolutionary technique that is
suitable to solve a variety of optimization problems that lie outside the scope of
the standard optimization methods. Generally, PS has the advantage of being
very simple in concept, easy to implement and computationally efficient. Unlike
other heuristic algorithms, such as genetic algorithms advocated by Michalewicz
(1996), PS possesses a flexible and well-balanced operator to enhance and adapt
the global and fine tune local search. A useful review of direct search methods
for unconstrained optimization is presented in Lewis, Torczon, and Trosset
(2000), where the authors give a modern perspective on the classical family
of derivative-free algorithms, focusing on the development of direct search
methods.14

Once PS algorithm has converged to θθθ1, we randomly choose a point θθθ2

such that {θθθ2: |θθθ1 − θθθ2| < Ξ} as starting point for the second step. For the
second step we use15 the standard Descent Method to maximize L(θθθ;S). In this
method, the algorithm solves a quadratic programming (QP) subproblem at
each iteration and updates an estimate of the Hessian of the Lagrangian at each
iteration using the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm.

Moreover, the SML method requires a intensive use of simulations, which
must be controlled by suitable variance reduction techniques to reduce the
number of computations as well as to enhance its performance. In practice, we
use the method of antithetic variates,16 which has two properties: cut in half
the number of normal samples to be taken to generate N paths, and it reduces
the variance of the sample paths, improving the accuracy.

Note also that the quality of the SML estimator depends on discretization
steps M and the simulation size K . Increasing M , K , or both, improves the
approximation of the transition densities and thus results in an estimator that
behaves more like the maximum likelihood estimator. However, at the same time,
it increases the computational burden to evaluate the approximate likelihood

13 patternsearch is an implementation in Matlabr for this algorithm.
14 A classic reference about nonlinear optimization in econometrics is Goldfeld and Quandt
(1972).

15 Implemented in Matlabr as fminunc function.
16 The use of antithetic variates and other variance reduction techniques can be found in Kloeden

and Platen (1999).
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function. Although the computational power increases, it is necessary to find a
reasonable trade-off between the increasing of M and K and the tractability of
the model’s estimation.

In this work we have followed Stramer and Yan (2007) and set M = K2.
While for setting K we assume the value proposed by Brandt and Santa-Clara
(2002), K = 5000 (plus 5000 antithetic variates) to approximate the likelihood
function. Furthermore, we have set ∆ = 10 for the Euler discretization.

4.3 A test of model fit
Once jumps might occur independently of lending rates jumps, we confront
our model with the pure jump-diffusion model of Merton (1976) where jumps
occur according to a Poisson process with intensity λ0 and with independent
and normally distributed jumps. Under the alternative model, asset prices in
presence of jumps are described by

dSt = µStdt+ σStdWt + dJt, (23)

where µ(·) is the drift, σ(·) the diffusion coefficient and Jt is a compound jump
process with constant intensity.

In the standard jump-diffusion model described in (23), the returns process
consists of three components, a linear drift, a Brownian motion representing
normal price variations and a compound Poisson process that accounts for
abnormal price changes. By construction, compound Poisson processes only
have a finite number of jumps on any interval. Nevertheless, as pointed by Cont
and Tankov (2003), they belong to the family of Lévy processes which may have
an infinite number of jumps on any finite time interval.

In principle, big jumps are changes in asset prices that are rare and much
larger than what can be explainable by a diffusion process, these jumps can
be detected by applying tests that look for large returns. On the other hand,
recognizing jumps in discrete observations from continuous-time models becomes
more difficult if the jump sizes are smaller, because they are of a size that could
be in principle attributed to a diffusion process. In fact, the ability to disentangle
jumps from volatility is the essence of risk management, which should focus
on controlling large risks leaving aside the day-to-day Brownian fluctuations.
Aït-Sahalia (2004) shows that likelihood-based statistical methods can be used
to distinguish volatility from jumps, thereby the presence of jumps does not
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impact one’s ability to estimate the diffusion parameter σ.
In spite of the widespread application of jump models, we also test whether

jump-diffusions do have a better fit than the simpler diffusive case,

dSt = µStdt+ σStdWt. (24)

When comparing (23) and (24) with our model, given by equations, (4) and
(7), we see that both models are nested and we obtain the pure jump-diffusion
by imposing σ2 = 0 and λ0 = θ, then λt = θ, for all t in equation (7). Likewise
we obtain the diffuse case when besides the former conditions we also impose
λt = θ = 0 in equation (7).

Within the MLE and SML framework, the likelihood ratio test (LR) is the
standard method for testing alternative hypothesis and under mild regularity
conditions, the LR has an asymptotic χ2 distribution. However, statistical tests
for jumps are particularly challenging for at least two reasons. First, these tests
involve nuisance parameters, µY and σ2

Y , that are not identified under the no
jumps null hypothesis, H0. As it is well known since Self and Liang (1987)17 in
the presence of nuisance parameters the tests limiting null distribution are not
generally chi-square. Indeed, they can take a much more complex form, such as
Andrews’ (1993) sup -χ2 distribution or Hansen’s (1996) χ2 processes. More
importantly, as emphasized in Hansen (1996), in several situations, the relevant
limiting distributions are nuisance dependent which preclude the construction
of specialized critical point tables. One early approach to dealing with the
problem is the asymptotic bounds procedure proposed in Davies (1977, 1987).
Hansen (1996) and Andrews (2000) have proposed simulated-based procedure to
approximate asymptotic p-values, which is valid in settings more general than
Davies’.

Second, the null hypothesis sets the parameter describing the arrival of jumps
at a boundary of its permissible domain (the so-called “nesting-at-boundary”
problem). As demonstrated by Andrews (2001), this situation produces difficul-
ties similar to unidentification and standard asymptotics and even bootstraps
may fail.

As pointed by Khalaf, Saphores, and Bilodeau (2003), all of the above-
mentioned statistical difficulties have important implications for the properties of

17 The same question was later addressed by Hansen (1996), Dufour (2006) and Andrews (2000,
2001).
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jump tests. In particular, spurious rejections, resulting from test size distortions,
cannot be ruled out, which underscores the importance of accounting for sample
size for inference. Indeed, Dufour (1997) and Andrews (2000, 2001) show that
test size distortions are not a small sample problem, they occur because of the
failure of standard asymptotics rather than slow convergence. Thus, spurious
rejections may occur even with very large financial data sets. This precludes
the application of standard simulation-based size correction techniques, such as
specialized critical point tables or the standard bootstrap.

To overcome the limitations present in standard likelihood ratio tests, we
implement the Monte Carlo test procedure proposed by Dufour and Khalaf (2001),
which is highly related to the parametric boostrap procedure, see discussion
in Dufour (1997). The methodology consists of combining boundedly pivotal
statistics with the Monte Carlo test technique to tackle the difficulties plaguing
available jump tests. First, it is established analytically that the LR no-jump test
statistic is boundedly pivotal. Then, it is applied a simulation-based methods to
the LR and to bounding statistics to obtain level-exact p-values in finite samples.

This approach has many advantages: (i) the MC p-value does not depend
on µY and σ2

Y ; (ii) the boundary restriction does not intervene here, since
the only element of the proof concern the pivotal characteristic of the LR
statistic; (iii) invariance to location and scale, i.e. µ(St) and σ(St) in the case
of equation (24); and (iv) the normality assumption is not necessary for the
validity of the results. Furthermore this approach is also simple to implement
and it is applicable to a large class of parametric models where unidentified
nuisance parameters are present.

5 Empirical Results
In this section, we estimate our model with some real observed data and examine
its goodness of fit. We choose to apply our model to some ETFs, particularly,
Leveraged ETFs. A leveraged ETF tracks the value of an index, a basket of stocks,
or another ETF with the additional feature that it uses leverage. The main
reason to choose this kind of instruments is that managers of a bearish LETF
may incur significant financing costs to maintain short positions if components
of the underlying ETF or the ETF itself are hard-to-borrow.

According to Avellaneda and Lipkin (2009) predictions, we expect to confirm
that changes in borrow rate affect the LETF prices. We also include a non-
leveraged ETF which, in theory, should not be affected by hard to borrow effects.
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Our sample is formed by end-of-day data on 7 actively traded ETF’s in the USA
and their corresponding lending rates.18 We have a total of 513 observations for
each pair (ETF, lending rate) covering the period from 26 June 2009 to 8 August
2011. Table 1 gives a list of ETF’s analyzed in our study, their tickers, managing
entity, leverage ratio, sector and corresponding asset under management (AUM).

Our sample is formed by 7 ETFs, composed by 6 leveraged (EDC, EDZ,
UYG, SKF, FAS and FAZ) and one standard or unleveraged ETF (EEM). A
leveraged ETF seeks a return that is ±X times the return of an index or other
benchmark (target) for a single day. For instance, the ProShares Ultra Financial
ETF (UYG) offers double exposure to the Dow Jones U.S. Financials index. To
achieve this, the manager invests two dollars in a basket of stocks tracking the
index per each dollar of UYG’s net asset value (NAV), borrowing an additional
dollar. Short LETFs, such as the ProShares UltraShort Financial ETF (SKF),
offer a negative multiple of the return of the underlying ETF. In this case, the
manager sells short a basket of stocks tracking the Dow Jones U.S. Financials
index (or equivalent securities) to achieve a short exposure in the index of two
dollars per each dollar of NAV. In both cases, the fund’s holdings are rebalanced
daily.

According to Avellaneda and Lipkin (2009), we expect that in presence
of hard-to-borrow assets, the NAV for these ETF’s be impacted, since ETF
managers may face difficulties to borrow assets to achieve the targeted long and
short exposures. Thus, we are interested in LETFs, in particular those that
track financial indices, which have been often hard-to-borrow since July 2008.
Moreover, as pointed by Avellaneda and Lipkin (2009) broad market ETFs such
as SPY19 have also been sporadically hard-to-borrow in the last quarter of 2008.

Observing Figure 1 we can see that for many ETFs the daily change in the
lending rates are over 50%. According to Avellaneda and Lipkin (2009) it is
likely that these spikes in the lending rate can be considered as hard-to-borrow
stocks and potentially ETF prices will be impacted as well.

Tables 2 and 3 present summary statistics for the log-differences of the ETF
prices and lending rates of the seven series considered. For price returns (Table 2),
the excess kurtosis are significant at 1%. For the lending rates (Table 3), the
skewness and the excess kurtosis are also significant at 1% for all ETFs.

18 The lending rates were obtained from an important broker-dealer in the USA.
19 SPY is one of the largest and most heavily-traded ETFs in the world, offering exposure to one

of the most well known equity benchmarks, S&P 500.
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Table 1. Description of Exchange-Traded Funds in our sample
Asset Under Management (AUM) as of 16 April 2012.

Name Manager
Leverage

Ratio Ticker Index/Sector AUM

EM Bull 3X Shares Direxion 3X EDC MSCI Emerging Markets $368.16 M
EM Bear 3X Shares Direxion -3X EDZ MSCI Emerging Markets $145.38 M
MSCI Emerging Ishares N/A EEM MSCI Emerging Markets $38.18 B
Ultra Financials ETF ProShares 2X UYG Financial $896.02 M
Ultrashort Financials ProShares -2X SKF Financial $234.82 M
Financial Bull 3X Shares Direxion 3X FAS Russel 1000 Financial Serv. $1.60 B
Financial Bear 3X Shares Direxion -3X FAZ Russel 1000 Financial Serv. $737.19 M

Table 2. Summary statistics on the log-price differences of daily spot
prices for Exchange-Traded Funds
There are 513 observations; they cover the period extending from 26 June 2009
to 8 August 2011. Following Campbell, Lo, and MacKinlay (1997, pp.18–20), the
distributions of skewness and excess kurtosis under normality may be approximated as
N (0,6/T ) and N (0,24/T ), respectively. For a sample size of 513, the corresponding
1% critical points for skewness and excess kurtosis are thus ±0.252 and ±0.503. We
see that the excess kurtosis are significant at 1% for all ETFs returns.

EDC EDZ EEM UYG SKF FAS FAZ

Mean 0.0027 -0.0031 0.0010 0.0015 -0.0016 0.0021 -0.0024
Standard deviation 0.0445 0.0458 0.0155 0.0292 0.0293 0.0433 0.0434
Skewness -0.0453 -0.0112 0.0038 -0.0464 0.0730 -0.0675 0.0681
Excess kurtosis 1.5760 1.3661 1.7113 1.3813 1.3798 1.3660 1.7752

Table 3. Summary statistics on daily lending rates for Exchange-Traded
Funds
There are 513 observations; they cover the period extending from 26 June 2009 to 8
August 2011. Based on Campbell, Lo, and MacKinlay (1997, pp.18–20), for a sample
size of 513, the corresponding 1% critical points for skewness and excess kurtosis are,
respectively, ±0.252 and ±0.503.

EDC EDZ EEM UYG SKF FAS FAZ

Mean 0.0324 0.0134 0.0239 0.0120 0.0056 0.0069 0.0143
Standard deviation 0.3030 0.1856 0.3296 0.1667 0.1196 0.1447 0.1788
Skewness 5.3971 6.7917 7.5914 2.7583 1.0000 2.9599 3.1353
Excess kurtosis 47.40 91.99 99.59 17.44 7.06 21.35 22.43
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The seven ETFs exhibit varying degree of volatility, positive and negative
trend and cyclical patterns during the period considered. For example, visual
inspection of Figure 2 indicates a downward trend common to these series but
different frequencies of large price changes (greater than 5% in absolute value).
In general all seven ETFs exhibit large negative and positive price changes that
occur with different intensity, all of which is consistent with skewness and excess
kurtosis indicated by the sample statistics in Table 2. A natural question is then
to test whether jumps in the lending rates are transmitted to its prices.

The estimation results are presented in Table 4, we report estimates and
standard errors, the LR test statistic and and p-values20 as proposed by Khalaf et
al. (2003). A number of conclusions may be drawn from this table. First, we see
that the geometric Brownian motion (GBM) model is rejected for all the LETF
investigated. Indeed, the LR test based on bound-based p-values, indicates that
for all series the null hypothesis of no-jump component can be rejected at 1%
significance, which is consistent with finding in the extant empirical literature.

For the Merton model—i.e. if σ2 = 0 and λ0 = θ, then λt = θ, for all t
in equation (7)—, estimated daily jump frequencies (λ0) are very similar and
range from 0.036 (one jump every ≈ 27 days) for FAS to 0.023 (one jump every
≈ 43 days) for EDC. Regarding the jump size parameters (µY and σY ) we
observe a heterogeneous behavior for estimates of the mean jump sizes, µY ,
since that for four of the LETFs the estimative of the mean jump size is negative
while that for three of them the mean size is positive. The existence of jumps
on LETF have by itself important implications for options pricing and portfolio
allocation, because in both cases we do not have a perfect hedge for options on
those LETFs.

The parameter µ estimates the daily return generated by the continuous
portion of the process and is accurately estimated for all indices. In all cases, a
comparison with Table 2 indicates that µ is measuring only the continuous part,
because when the jump size is negative (positive) µ is larger (smaller) than the
sample mean.

In this paper we focus on estimation of a jump-diffusion model parameters
using the borrow rate as a proxy for the non-observable stochastic intensity

20 The Monte-Carlo based test is performed as follows: (i) the likelihood ratio (LR) statistic
is calculated for the observed sample, LR0; (ii) N simulated samples are generated using
draws from the null DGP; (iii) the LR statistic, LRn, is calculated for each of the simulated
samples, 1 ≤ n ≤ N ; (iv) The rank R̂N (LR0) of the observed sample LR0 is determined in
LR0 . . .LRN ; (v) the MC p-value is obtained from p̂N (LR0) = 1 −

(
R̂N (LR0) − 1

)
/(N + 1).
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Figure 1. Lending rates
The lending rates are expressed in annual basis and computed as the average values for
all transactions carried with the ETFs in our sample.
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Figure 2. ETF’s daily prices
ETF prices are expressed in two axis: (i) left-hand side: FAZ, SKF and EDZ; (ii) right-
hand side: EDC, EEM, UYG and FAS. Prices are end of day values.
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Table 4. Estimation Results
Standard errors are in parenthesis. DSJD denotes double stochastic jump diffusion
(extended Avellaneda & Lipkin, 2009) based on (4) and (7), JD denotes the Merton
model based on (23) and GBM represents the geometric Brownian motion without
jumps based on (24). L(θ̂θθ) is the log-likelihood evaluated at the estimated coeffi-
cients. LR = 2(sup{L(θθθ | x) : θθθ ∈ Θ} − sup{L(θθθ | x) : θθθ ∈ Θ0 }). p-value represents
the bound Monte-Carlo (BMC) test developed by Khalaf, Saphores, and Bilodeau
(2003). For each ETF, we present two p-values, the first represents testing H0 : JD
against H1 : DSJD, while the second p-value describes H0 : GBM against H1 : JD.

ETF µY σY µ σ κ θ – λ0 σ2 L(θ̂θθ) LR p-value

EDC

DSJD -0.026 0.010 0.0023 0.038 9.741 0.060 0.0212 -9.699
(7.3E-03) (5.4E-03) (7.2E-04) (8.1E-03) (3.3E-01) (5.3E-03) (7.4E-03) 4.840 0.089

JD -0.013 0.010 0.0025 0.048 0.023 -12.119
(3.4E-01) (8.8E-04) (8.8E-04) (5.2E-04) (8.3E-04) 7.070 0.010

GBM 0.0027 0.045 -15.654
(6.1E-04) (1.24E-04)

EDZ

DSJD -0.027 0.029 -0.0028 0.021 9.785 0.061 0.0112 -6.530
(8.3E-03) (7.4E-03) (7.2E-03) (9.2E-03) (9.7E-01) (8.3E-03) (6.3E-03) 10.254 0.010

JD -0.027 0.010 -0.0029 0.068 0.025 -11.658
(2.1E-03) (1.9E-03) (5.7E-03) (2.9E-02) (8.7E-03) 9.375 0.010

GBM -0.0031 0.046 -16.345
(5.1E-04) (1.32E-04)

EEM

DSJD 0.017 0.039 0.0011 0.028 9.992 0.076 0.0204 -8.890
(8.8E-02) (8.9E-03) (7.9E-03) (8.9E-04) (6.3E-02) (8.4E-02) (8.6E-02) 0.603 0.633

JD 0.020 0.021 0.0020 0.008 0.023 -9.192
(2.4E-03) (6.8E-04) (3.4E-03) (8.9E-04) (6.2E-02) 13.458 0.010

GBM 0.0030 0.016 -15.921
(6.1E-04) (1.51E-04)

UYG

DSJD -0.056 0.018 0.0015 0.020 6.991 0.054 0.0108 -8.341
(5.3E-02) (3.4E-03) (2.7E-03) (8.0E-04) (3.7E-02) (9.3E-02) (5.1E-02) 8.016 0.068

JD -0.032 0.037 0.0015 0.08 0.035 -12.349
(4.4E-03) (7.1E-03) (5.4E-03) (8.1E-03) (2.1E-01) 11.167 0.010

GBM 0.0015 0.022 -17.932
(6.9E-04) (5.36E-05)

SKF

DSJD 0.025 0.028 -0.0026 0.020 7.987 0.045 0.0864 -9.843
(1.4E-03) (1.9E-03) (1.8E-03) (5.0E-03) (1.3E-02) (1.5E-03) (4.6E-03) 4.595 0.105

JD 0.110 0.017 -0.0020 0.058 0.032 -12.140
(2.7E-03) (3.9E-04) (1.6E-03) (2.1E-03) (1.9E-03) 10.884 0.010

GBM -0.0016 0.029 -17.582
(4.6E-04) (5.37E-04)

FAS

DSJD 0.030 0.037 0.0021 0.030 8.616 0.070 0.0520 -8.345
(6.7E-03) (4.9E-03) (7.2E-04) (2.4E-03) (4.4E-01) (2.1E-01) (3.2E-01) 7.548 0.063

JD 0.024 0.015 0.0031 0.028 0.036 -12.119
(9.2E-03) (1.9E-03) (1.4E-03) (1.8E-02) (1.0E-01) 8.205 0.010

GBM 0.0043 0.043 -16.222
(5.7E-04) (1.18E-04)

FAZ

DSJD 0.031 0.011 -0.0035 0.015 7.993 0.065 0.0624 -10.408
(1.6E-03) (1.5E-03) (1.5E-04) (3.7E-03) (5.4E-01) (2.9E-03) (1.6E-03) 5.622 0.023

JD 0.043 0.147 -0.0028 0.028 0.033 -13.219
(1.5E-03) (2.3E-03) (6.2E-04) (8.0E-04) (7.6E-03) 10.113 0.010

GBM -0.0024 0.023 -18.275
(6.6E-04) (1.18E-04)
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to permit analysis of the impact of borrow rates on ETF prices. We see from
Table 4 that the LR test computed via a bound-based p-values rejects the null
hypothesis of pure Jump Diffusion (JD) in favor of a stochastic intensity jump
model for two ETFs in our sample: FAZ and EDZ. As presented in Table 1, FAZ
and EDZ are both bearish leverage ETF, with a relatively small AUM. Even
though a small AUM may not be a necessary condition for including these ETF
in a hard-to-borrow list, this fact may be relevant. Unfortunately, there is not
enough variation on cross-section data for ETF asset under management that
could be used to investigative this effect.

For both FAZ and EDZ, all parameters are significant at 1% level, but the
estimates for two set of parameters are slightly different between these two
LETFs. First, the mean jump size, µY for EDZ is positive while for FAZ
it is negative. Das and Sundaram (1999) derived21 closed-form expressions
for skewness and kurtosis for jump-diffusion model. Mean of jump size, µY ,
determines skewness of distribution, while jump size volatility, σY , controls the
peakedness of the density, it is peaked for small values, but flat for large values.
Using the estimates from Table 4 and the formula derived by Das and Sundaram
(1999) we verify that the model (Kurtosis: EDZ = 1.32 and FAZ = 1.4; and
skewness: EDZ = −0.42 and FAZ = 0.57) can match observed levels of skewness
and kurtosis as presented in Table 2.

Although for these two ETFs we have mixed results on the sign of µY , these
findings do not necessarily mean inconsistent estimation for two reasons. First,
the model is able to match empirical skewness and kurtosis, and skewness of
these two indices have indeed different signs. Second, given normally distributed
jumps, the mean jump size has to accommodate both positive and negative
values, an alternative would be specify a two-side distribution as proposed by
Kou and Wang (2004) but that requires dealing with all complexity associated
to it.

Second, the volatility of intensity process, σ2, is also higher for FAZ. In
particular, as standard in CIR process, the conditional volatility of the intensity
process increases when the current level of borrow rate does. Moreover, according
to equation (13) the jump probability is a positive function of σ2. These two
effects are in line with the jump clustering observed on the FAZ lending rate
depicted in Figure 1. The other parameters estimates are very similar between

21 Excess Kurtosis = 3 +
[
λ0(µ4

Y +6µ2
Y σ

2
Y +3σ4

Y )
(σ2+λ0σ2

Y
+λ0µ2

Y
)2

]
and Skewness =

[
λ0(µ3

Y +3µY σ
2
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(σ2+λ0σ2
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]
.
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these two indices.
The stochastic process describing the jump intensity, i.e equation (7), is a

stationary mean reversion process. It can be stated then that θ is the equilibrium
level for this stochastic differential equation. In a finite-time horizon, θ plays the
role of attractor in the sense that when λt > θ the trend term κ(θ − λt) < 0,
and therefore, λt decreases and when λt < θ a similar argument establishes
that λt grows. Another key property of a mean-reverting process is the half-life
t1/2 = ln(2)/κ. This is the time taken for the process to revert half way to its
long-term level from its current level. We have that for EDZ, the mean reversion
rate of κ = 5 for its intensity means that the λt tends to be pulled back to its
long-term level over a period of roughly 18 days. In turn, FAZ is little slower, it
will take roughly 21 days to revert to its long-term mean.

In general we do not find enough statistical evidence supporting that LETF
prices are affected by borrow rate, except for two cases. Although the hard
to borrow effect has not been found significant for all ETF in our sample, its
existence can not be ignored by market participants, in particular for options
market makers. The reason is that shorting costs money and the arbitrage
between puts and calls on the same line, known as a conversion, cannot be made
unless there is stock available to short. Therefore, since synthetic puts cannot
be manufactured by owning calls and shorting stock, the nominal put-call parity
does not hold.

On the other hand, we do find statistical evidence supporting the presence
of jumps (state dependent or not) for all ETFs in our sample. As already
highlighted by Aït-Sahalia (2004) the study of jumps is relevant for investors in
terms of asset allocation and portfolio optimization as large price movements
may generate significant losses and encourage the demand for higher risk premia.
After all, this paper contributes to the literature by presenting evidences aligned
with Johannes et al. (1999) that jumps are not fully state independent and they
can cause negative impacts on trading strategies of short sellers and options
market makers alike.

6 Final Remarks
Securities lending is common theme in finance, mainly because it is tied to
short-selling’s practices and regulators have often alleged that a practice of short
selling magnifies the decline of asset prices. But that is not the whole picture,
because it ignores several risks involved on these strategies. Among others,
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there is hidden risk for loans without a guaranteed term, because under a recall
notice the short seller, whether intentionally or not, will need to cover the short
position in a rising market. This effect is magnified for a hard to borrow stock
that is, if it is difficult to locate shareholders who are willing to lend the share.

Therefore, a hard-to-borrow stock can be seen as a security that presents
an increased likelihood of buy-ins. In turn, the buy-in events may potentially
introduce discontinuous movements in the asset prices as result of a sharp
increase in its demand by short-seller seeking to cover a short position. In
this sense, the occurrence of jumps are no longer unobservable, but could be
identified with buy-in events.

The impact of jumps in asset prices have been studied systematically since
Merton (1976). Recently some authors have tried to associate the occurrence of
jumps with observable variables. In this paper we implement an econometric
model to empirically test the hard-to-borrow model of Avellaneda and Lipkin
(2009) for a selected group of Leveraged ETF. Our identification strategy relies on
no-arbitrage arguments to connect the jump intensity with the lending rate. We
do find statistical evidence supporting the hard-to-borrow model for two bearish
three times leveraged ETF. Furthermore, as a by-product, we find that jumps
are presented in all LETF in our sample. We view our results in this paper as a
motivation for formulating possibly more involved jump models which are state
dependent. A possible extension of this work could be to investigate whether
the hard-to-borrow model works better using intraday prices or a different asset
class.
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Appendix A Additional graphics
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Figure 3. Returns and borrow rates
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